
Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola
(Guest Editors)

Volume 39 (2020), Number 3

Understanding the Design Space and Authoring Paradigms
for Animated Data Graphics

J. Thompson1 , Z. Liu2 , W. Li2 and J. Stasko1

1Georgia Institute of Technology, Atlanta, Georgia, USA
2Adobe Research, Seattle, Washington, USA

Abstract
Creating expressive animated data graphics often requires designers to possess highly specialized programming skills. Alter-
natively, the use of direct manipulation tools is popular among animation designers, but these tools have limited support for
generating graphics driven by data. Our goal is to inform the design of next-generation animated data graphic authoring tools.
To understand the composition of animated data graphics, we survey real-world examples and contribute a description of the
design space. We characterize animated transitions based on object, graphic, data, and timing dimensions. We synthesize the
primitives from the object, graphic, and data dimensions as a set of 10 transition types, and describe how timing primitives
compose broader pacing techniques. We then conduct an ideation study that uncovers how people approach animation creation
with three authoring paradigms: keyframe animation, procedural animation, and presets & templates. Our analysis shows
that designers have an overall preference for keyframe animation. However, we find evidence that an authoring tool should
combine these three paradigms as designers’ preferences depend on the characteristics of the animated transition design and the
authoring task. Based on these findings, we contribute guidelines and design considerations for developing future animated data
graphic authoring tools.

CCS Concepts
• Human-centered computing → Visualization theory, concepts and paradigms; Empirical studies in visualization;

1. Introduction

Animated graphics are a major type of animation that focuses on
the motion of graphic design elements. The graphics can be bitmap
images, but vector graphics in the form of geometric shapes and
text are more prevalent. These vector-based graphical objects can
represent abstract concepts (e.g., a company name) or real-life ob-
jects and characters. To create an animation, designers specify how
the properties and behaviors of the graphical objects change over
time. This type of animation has many purposes such as to transition
between states of an interface, to highlight changes in a view, to
attract viewers’ attention, and to facilitate storytelling. Examples
of such animation are numerous and range from logo animation to
particle system simulation to animated illustration.

A variety of commercial and research tools have been developed
for creating 2D and 3D motion graphics [Ado20a], animation in
user interface prototyping [HS93, Inv20, Pri20, Tum20, Ado20c],
animation in presentation [App20,Mic20], and animated illustration
and diagrams [DCL08, KCG∗14, KCGF14, ZS03]. In these tools,
the animated behavior is usually defined by designers drawing upon
their artistic expertise. Prevalent authoring paradigms for animated
graphics include:

• keyframe animation: specify properties of graphical objects at

certain points of time by setting a set of keyframes, frames in
between two keyframes are generated by tweening.

• procedural animation: generate animation of large number of
animated objects with a set of behavior parameters.

• presets and templates: apply predefined animation effects and
configurations to objects.

Our focus in this work is on a specific type of animated graph-
ics known as animated data graphics. In this area, an underlying
structured data set is being visualized and animation is part of the
presentation. Much like an information visualization depicts data
through graphical objects, in animated data graphics a visualization
changes and updates based, at least in part, on the values within an
underlying data set.

Animation may be necessary or at least desirable to be used for a
variety of reasons. First, the data itself may be changing. Alternately,
time may be a fundamental attribute of the data set [AMM∗08]
and animation is used to represent temporal changes. Animation
additionally can enhance a data story by encoding data (reveal rela-
tionships, encode emotions and data attributes), supporting discourse
(narrative flow, highlight content), and improving user experience
(keep users engaged, provide visual comfort and aesthetics, hook the
user) [CRP∗16]. Animated data graphics are popular in digital jour-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-3102-4035
https://orcid.org/0000-0002-1015-2759
https://orcid.org/0000-0002-2871-8650
https://orcid.org/0000-0003-4129-7659


Thompson et al. / Understanding Animated Data Graphics

nalism for narrative purposes. Researchers and designers have also
used them to explain complex concepts and problems (e.g., algo-
rithm animation [Bro88,KS02]). Custom analytics tools also employ
animated transitions to update dashboards [WSC17, Few06].

Compared to general animated graphics, authoring tools for ani-
mated data graphics are still relatively scarce. To create sophisticated
animated designs, developers often employ programming libraries
[BOH11,RF06]. Some tools try to combine graphical interfaces with
scripting for creating animated data graphics [Ado19], but the range
of expression is limited. Non-programming tools [Ado20a, Kil19]
provide predefined templates, which constrain the variety of anima-
tion designs.

What additional complexities are introduced to animation when
data becomes an integral part of animation design? Moreover, what
can we learn from current animation tools to inform the design
of next generation authoring tools for animated data graphics?
How do the characteristics of animated data graphics influence
designers’ preference of authoring approaches? To help answer
these questions, we analyze 52 examples of animated data graphics
collected in the wild. The analysis of these real-world examples
yields a design space, expressed as primitives in four dimensions:
object, graphics, data, and timing. These primitives provide building
blocks for higher-level compositions such as transition types and
pacing techniques. Under the backdrop of the animation authoring
paradigms and the design space, we conduct an ideation study to un-
derstand how designers conceptually approach authoring animated
data graphics. The study results show that keyframe animation is
a familiar authoring paradigm preferred by many participants in
a majority of tasks. However, we find evidence that an authoring
tool should combine paradigms as the other two paradigms are
indispensable for certain tasks.

2. Background and Related Work

2.1. Authoring Paradigms for Animated Graphics

There are three dominant animation authoring paradigms that are
relevant for animated data graphics: keyframe animation, procedu-
ral animation, and presets and templates. Performance animation,
where users directly act out the desired motion, is another common
authoring paradigm. However, it is typically applied for animat-
ing characters rather than large collections of graphical elements,
which are common in data graphics. An authoring paradigm can
be implemented in different input modalities and interaction tech-
niques (e.g., natural language interfaces, programming languages,
Graphical User Interfaces (GUI), sketching, gesturing). Here, we
review related research and existing commercial systems that adopt
keyframing, procedural animation, and presets and templates.

2.1.1. Keyframe Animation

Motion graphics tools like After Effects [Ado20a] allow users to de-
fine properties (e.g., position, scale, opacity) of graphical objects at
specific points in time in the form of a keyframe. Intermediate frames
are created by interpolating/tweening the visual properties between
defined keyframes. The graphical user interface for keyframing is
usually in the form of a timeline (Figure 1a) coupled with a property
inspector. In User Interface (UI) prototyping tools, it is possible to

Figure 1: (a) the Timeline in Blender [Ble02] where users can de-
fine keyframes for the active object. The diamond shapes represent
keyframes; (b) Users create “auto-animate” transition effects be-
tween two artboards in Adobe XD [Ado20c] by drawing a blue
connector.

treat each UI state as a keyframe. Instead of defining behavior explic-
itly on a timeline, sometimes simpler interfaces are used (e.g. users
draw a connector to link two artboards representing two keyframes)
(Figure 1b). Programming toolkits such as Rekapi [Kah17] support
the creation of keyframe animation through coding.

2.1.2. Procedural Animation

While keyframing gives designers precise and direct control over
the properties and behaviors of graphical objects, it can be tedious
to specify coordinated motions of a large number of objects. Pro-
cedural animation is a popular paradigm for animations involving
many objects, such as particle systems (e.g. fire, rainfall), flock-
ing (e.g. a school of fish) and stochastic motion (e.g. leaves in the
wind) [KCG∗14]. These animating behaviors are typically created
procedurally: starting with an initial condition, an engine (often
called an “emitter” or “oscillator”) generates motion by adjusting a
set of parameters (e.g. wind strength, object’s stiffness). The algo-
rithmic outcome may be unpredictable. User interfaces for proce-
dural animation come in many forms: programming languages (e.g.
tweening in D3), WIMP (Windows, Icons, Menus, Pointer) com-
ponents (Figure 2a), sketching (Figure 2b), and node-based visual
programming (e.g. TouchDesigner [Tou20]).

2.1.3. Presets and Templates

For novice and casual users, it is not always beneficial to use a pow-
erful tool that forces them to start from scratch. Reusable animation
presets and templates can significantly lower the learning threshold
and reduce the time and effort needed, and these predefined anima-
tion types are sufficient in many use cases. Presentation tools offer
animation effects both at the frame level (e.g. slide transition effects)
and at the object level (e.g. fly-in or bounce) (Figure 3). Parameters
of these effects are also exposed for user manipulation. Similarly,
motion graphics tools provide such functionality (e.g. text animating
presets and motion graphics templates in After Effects [Ado20a]).

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

Figure 2: (a) interface in Adobe Character Animator [Ado20b] for
users to specify parameters of particle animation (bubbles from the
fish mouth) and physical properties of the fish body; (b) steps to
create oscillating motions of leaves in Draco [KCG∗14].

Figure 3: slide transition effects and object animation presets in
Microsoft Powerpoint [Mic20]

Users simply choose from a list of available presets and apply to
their own graphical objects.

It is common for an animation tool to support multiple author-
ing paradigms. For example, After Effects [Ado20a] supports both
keyframing and presets/templates. Complex animations may also
be composed by combining different paradigms. For example, one
may need to add procedurally generated particle motion on top of a
keyframe animation.

2.2. Tools for Animated Data Graphics

Tools for creating animated data graphics are sparse. Visualization
designers often rely on programming toolkits [BOH11, RF06] or
custom scripts to create sophisticated data-driven animations. For
example, D3 supports the specification of data-driven transitions
based on the “enter, update, exit” paradigm. D3 also supports a
number of interpolation functions that animate visual properties
for a declared function of duration, delay, and easing. Building on
top of ggplot2 [Wic09], gganimate offers programmatic ways to
describe animation [LPR19]. Progamming toolkits such as these are
very expressive, but coding has a steep learning curve and demands
significant time and cognitive effort.

Non-programming tools tend to rely on templates for the creation

of animated data graphics. DataClips [ARL∗17] allows authors to
create animated data videos by composing a sequence of predefined
animation and visualization combinations. After Effects [Ado20a]
has data-driven motion graphics templates. Flourish [Kil19] has
recently introduced animated transitions to “Talkies” [Cla19], allow-
ing for audio-driven visualizations that interpolate marks’ properties
between narrative points. However, these tools only support a lim-
ited set of visualization templates; DataClips and Flourish do not
allow for the design of pacing or animation effects. The motivation
of this research is to understand how we can go beyond the template
paradigm and support the creation of more nuanced and expressive
animated data graphics.

2.3. Taxonomies on Animated Data Graphics

Many taxonomies exist to understand the different types of changes
in animated data graphics. Heer and Robertson defined a taxonomy
of animated transitions in statistical data graphics [HR07]. Their
taxonomy defines 7 types of animated transitions by considering the
syntactic or semantic operators one might apply to a visualization.
Fisher [Fis10] adapted this taxonomy and proposed a list of six
animation types in visualization. DataClips [AHRL∗15] identified
high-level building blocks of data videos expressed in visualization
type × animation type combinations. Chalbi [Cha18] distinguished
between data-driven changes and visual-driven changes, and enu-
merated animated changes at the level of low-level components.
Chevalier et al. [CRP∗16] went beyond data graphics to examine the
different roles played in animation in user interfaces, so that novel
uses of animation and research opportunities could be identified.
The primary goal of our analysis of animated data graphics exam-
ples is not to build a comprehensive taxonomy. Instead, we aim to
identify the primitives to be used in the authoring of animated data
graphics along four dimensions: object, graphics, data and timing.
Exemplar compositions of these primitives, such as transition types
and pacing techniques, are useful higher-level constructs that can be
included in authoring tools.

2.4. Studies on Authoring Paradigms and Workflows

Amini et al. observed how designers create data storyboards based
on data facts [AHRL∗15]. They focused on the activities and pro-
cesses involved in the creation of storyboards. Kramer et al. studied
how programming paradigms for animation affect developers’ pro-
ductivity [KHBB16]. They compared two paradigms: declarative
(which corresponds to keyframing) and procedural (which is usually
implemented as requestAnimationFrame in Javascript), and found
that developers could implement animations faster using a declara-
tive language, but declarative languages could lead to unexpected
animation behavior. In our study, we do not wish for the participants
to be restricted to a specific input modality or user interface. Instead,
we focus on authoring paradigms at a conceptual level. Our ideation
study is thus more open-ended, and our methodology resembles
more of that used in the Data Illustrator project [LTW∗18], where
designers were asked to demonstrate workflows using tools of their
choice. Since data sketching offers an unrestricted way to solicit user
ideas [RHR16, WHC15], we also encouraged our users to sketch
their ideas on paper whenever possible.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

3. Survey of Animated Data Graphics

To begin, we will introduce terminology to be used throughout
the remainder of the article. Animated data graphics are composed
of animated transitions on data graphic elements. An animated
transition is the interpolated change between two visual states. We
further breakdown these terms as follows:

• A visual state can be thought of as a data graphic at rest. Vi-
sual states include all information about the data graphic’s static
design.

• A transition is the uninterrupted change from one visual state of
a data graphic to another.

• Animation is the sequence of intermediary states between a tran-
sition that is typically perceived as continuous movement.

To understand the design space of animated data graphics we
surveyed examples from online sources. The purpose of our survey
is to (i) identify composable primitives of animated data graph-
ics, and (ii) recognize common compositions of those primitives.
Our survey includes data narrative articles, data videos, visualiza-
tion slideshows, and interactive maps. We collected an initial set
of 78 examples from the following sources: the Kantar Informa-
tion is Beautiful Awards [Kan20]; media outlets including the New
York Times [New18], the Pudding [Pud20], the Google News Lab
[Goo20]; and well-known freelance designers such as Nadieh Bre-
mer [Bre20], Neil Halloran [Hal20], Shirley Wu [Wu20], and Moritz
Stefaner [Ste20].

We exclude examples where all animated transitions are unrelated
to data. For example, we exclude user interface transitions such as
highlighting buttons or expanding menus. We also exclude animated
transitions that only occur at the frame level – meaning none of the
constituent objects transition. By only including examples with data-
related animated transitions, we refined our initial pool to the final
collection of 52 examples. This survey is not exhaustive, however
our goal is not to catalogue all animated data graphics but to inform
the design of authoring tools. To that end, our survey includes a
diverse set of data graphic forms and animated transition designs.

To analyze these examples, we first identified their unique an-
imated transition instances. We identified instances based on the
following criteria: (i) an object undergoes an animated transition, (ii)
the animated transition is data-related, (iii) repetitive animated tran-
sitions count as a single instance (e.g., circles in a scatterplot change
y-position). When analyzing these animation instances, we set out
to identify building blocks for future authoring tools that go beyond
templates. Related taxonomies [HR07, ARL∗17] provide transition
types that are well-suited for animation templates. While templates
are easy to use and understand, they are difficult to customize. We
seek to identify composable primitives for future authoring tools
that are generalizable across datasets and visualization forms.

During weekly meetings over a period of three months, we it-
erated on these primitives until we could accurately describe each
animated transition instance. During this iterative process we sought
to balance the granularity of our primitives. Too high-level and the
primitives would resemble animation templates; while low-level
primitives would not be generalizable across datasets and visualiza-
tion forms. We identified composable primitives from each of four
dimensions: object, graphic, data, and timing. The object dimension

refers to what type of graphic object transitions during the animated
transition. The graphic and data dimensions describe how the object
transitions from one visual state to the next. Finally, the timing di-
mension consists of relative timing concepts to compose animation
designs and pace sequences of animated transitions.

4. Design Space of Animated Data Graphics

Here we provide a description of the design space for animated data
graphics. We characterize the design space by identifying compos-
able primitives across four dimensions: object, graphic, data and
timing. The primitives combine to form animated transition designs.
We provide a list of exemplar compositions in the form of transition
types (Section 4.2.1) and pacing techniques (Section 4.2.2) that we
identified during our survey of examples.

4.1. Primitives

4.1.1. Dimension 1: Object Type

The object dimension describes what type of graphic object under-
goes a transition. We propose the following set of 5 object types,
delineated by their role in a data graphic and their unique properties.
The same graphical element can be used in a variety of ways, differ-
ing by its role, relation to data, constitutent parts and attributes. For
example, a rectangle can be used as a glyph to represent data and
encode data values using its visual attributes; a rectangle may also
be used as a legend or an annotation.

Glyphs are graphical marks (e.g., lines, rectangles, text, images,
groups) representing one or more data tuples. A glyph’s visual
appearance may encode data values.

Groups are collections of glyphs. Glyphs within a group are often
arranged in a spatial layout.

Axes & Legends are the visual representation of scales that map
data values to visual properties. They explain how data maps to
visual space of the data graphic.

Annotations are auxiliary elements that help explain key insights
and contextual information about the data graphic to the audience.
Annotations contain text, shape, and image elements and target
different components of the data graphic (e.g., specific glyph, series
of glyphs, visual substrate, entire graphic). Annotations include
labels, captions, tooltips, and footnotes. Annotations are not bound
to data, although they may depend on data attribute-values from a
target glyph.

Cameras provide a configurable vantage point of the data graphic.
The camera (or viewport) projects the scene graph onto a view based
on the camera’s configuration. The projection attributes depends on
camera type, but can include: focal point, field of view, zoom level,
and rotation. Changes to these parameters result in pan, zoom, and
rotation actions.

4.1.2. Dimension 2: Graphics

The graphics dimension describes how an object changes from one
visual state to the next. It is concerned with the constituent visual
elements, their visual attributes, and configurations that compose

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

a data graphic scene. Initially, we considered describing the low-
level visual properties that change for each object (e.g., visibility,
position, opacity, fill color, text content). However, this approach
only provides a taxonomy of the visual attributes that transition in
our set of examples. Instead, we provide 3 primitives that describe
how an object visually changes.

Visual Presence is the existence of an object. When an object is
added or becomes visible, we say it “enters” the scene graph. Con-
versely when an object is removed, we say it “exits.”

Visual Attributes are the visual channels of objects such as posi-
tion, fill color, stroke, opacity, etc. that are set by the designer and
unrelated to data encodings. Unless overridden by data encodings
or configurations, glyph instances share the same visual attribute
values. Visual attributes differ for graphical elements (e.g., text
elements have different visual attributes than line elements).

Configurations are the parameters of an object that are not directly
visible in objects. Configurations differ from visual attributes be-
cause the parameter value is not directly expressed as a visual value.
For example, a group can have a layout configuration, specifying
how its constituent glyphs should be positioned.

4.1.3. Dimension 3: Data

The data dimension describes how the underlying data changes in
a data graphic. Modifications to data mappings can change visual
properties of objects. For example, if the bound data attribute is
changed in a mapping, the glyphs may express a new visual value
for the newly bound data values. Change in the underlying data at
times results in visual changes to glyphs, however this differs from
the graphic dimension where each glyph expresses the same visual
attributes regardless of data.

Data Presence is the existence of data tuples. Data is added or
removed to a data graphic through manifestations in objects. For
example, glyph instances are bound to one or more data tuples.

Data Encodings are the functions that transform data attribute val-
ues into visual property values for each glyph instance. Data encod-
ings can be shared across groups of glyphs.

Data Transforms are the operators that manipulate datasets into
new forms to then be attached to graphical objects. Data transforms
include data nesting, aggregation, and linking. These operations
allow for the specification of data graphic designs beyond the raw
dataset.

Data Targets are the data focal points for other objects. For example,
annotations such as labels and tooltips target a glyph for a specific
data tuple.

Data Queries are predicates applied to a dataset that generate in-
clusion and exclusion selections. The design specifies how the cor-
responding glyphs for these two selections will be visually altered.
For example, filtering temporally removes the exclusion selection
from the scene graph, while highlighting visually emphasizes the
inclusion glyphs and/or de-emphasizes the exclusion glyphs.

4.1.4. Dimension 4: Timing

The timing of an animation describes the pace at which visual prop-
erties successively move from start to end of a transition. Although

a transition has the same start and end visual states, animation pro-
vides diverse opportunities to illustrate between those states. We
describe timing of animations based on 4 primitives. The primitives
rely on a relative notion of timing. For example, the duration of an
animation is defined as the relative amount of time that transpires
between the start and end of an animation. Relative timing allow
designers to compose successive animations into larger animation
compositions.

Triggers are events that initiate an animation. Triggers provide
an initial reference point. Triggers include the following: a specific
timestamp indicating the start or end of another animation, repetitive
temporal events such as a clock, or navigation inputs such as scroll,
button clicks, or slider events [MHRL∗17].

Delay is the time to start a transition relative to the trigger point.
Zero delay coincides with an immediate start of the animation.

Duration is the amount of time to complete a transition. Duration
is defined in relation to the animation’s start point as the amount of
time that transpires until the animation ends.

Easing specifies the speed that a transition progresses at different
points in time of the animation. An easing function computes the
value of an animated property based on the percentage of time that
has progressed in relation to the duration.

4.2. Compositions

The dimension primitives discussed in Section 4.1 are intended to be
combined into compositions of animated transitions. In this section
we identify commonly employed compositions from our survey
of examples. We recognize a set of 10 transition types based on
the primitives from the object, graphic and data dimensions. We
also point out popular pacing techniques composed from the timing
primitives in Section 4.1.4. These compositions are not a taxonomy
– they do not describe all possible animated transitions. However,
these compositions can be combined further to create more complex
transitions and animations. We predict future animated data graphic
authoring tools will support these compositions.

4.2.1. Transition Types

In our design space, transitions are described by the changes in
the object, graphic and data dimensions. When a transition is not
specific to an object primitive, it can be applied to multiple object
types. We identified a set of 10 commonly employed transition
designs found in our survey of examples. It is obvious that these
transition types are not exhausive: there are many more possible
primitive compositions.

Enter/Exit: (visual presence + data presence) A data-bound object
is entirely added or removed from the scene graph. The change
occurs in the object’s visual presence and data presence. Applicable
object types include glyphs, objects, annotations, and axes and
legends. An example of enter/exit is the introduction of a new glyph
or chart.

Combine/Partition: (data transform + visual presence + config-
uration) Objects are combined or partitioned based on a nesting
data transform and re-arranged by a change in layout configuration.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

Each objects’ visual presence changes. On aggregate, the attached
data tuples are not added or removed from the collection (i.e., data
presence), however data tuples are re-attached to objects via data
transformation. An example is the partitioning of a bar chart using a
data attribute, resulting in a stacked bar chart.

Visual Alteration: (visual attributes) Here an object’s visual at-
tributes change, which is specified by the designer and independent
from data. The object’s data encodings, data transforms, data pres-
ence remain unchanged.

Data Encoding Alteration: (data encodings) Data encodings are
altered, added, or removed from the data graphic. This change may
or may not result in changes in terms of visual presence or visual
attribute. For example, if the data value remains unchanged, so does
the visual attribute.

Ordering/Re-configuring: (configurations) This transition typi-
cally applies to a group, where its layout configuration (graphi-
cal dimension) changes, resulting changes in the spatial positions
(graphical dimension) of its constituent members. This configuration
change may be based on data (e.g. sorting by a data attribute), or
may be based on stylistic considerations only.

Highlighting/Filtering: (data queries + visual presence | visual
attributes) Objects are visually highlighted or filtered based on the
inclusion or exclusion selections defined by a data query. Here the
relevant graphical dimension primitives include visual presence and
visual attributes, and the relevant data dimension primitive is data
queries. Applicable objects include glyphs, objects and annotations.

Data Ticker: (data presence) The visual states cycle through the
values of a temporal or nominal data attribute. This attribute is
typically orthogonal to the data attributes represented in the graphic.
This type of transition applies to glyphs and objects. An example of
data ticker is the animated bubble chart over time.

Appear/Disappear: (visual presence) Objects visibility changes in
the scene. The main difference between this type and enter/exit
is that enter/exit involves data presence as a primitive, but ap-
pear/disappear does not. Examples of appear/disappear include the
introduction of an annotation, which is not bound to data.

Camera Alteration: (camera + configurations) The camera’s con-
figuration such as position or projection properties are altered, re-
sulting in a view change (e.g., panning, zooming, rotating).

Simulated Process: (data transforms) Glyphs animate based on a
simulated process, defined by an underlying algorithm or streaming
data source.

4.2.2. Pacing Techniques

Here we describe popular pacing techniques based on the timing
primitives discussed in Section 4.1.4. The following compositions
rely on relative timing concepts to build up successive animations
into larger compositions. Pacing techniques are designed to assist
the audience perceive and apprehend how data graphics change
during animated transitions.

Staging segments an object’s visually complex transition into sub-
transitions, allowing for multiple changes to be easily observed.
Staged transitions rely on subsequent sub-transitions to trigger af-
ter the previous sub-transition ends. Heer and Robertson [HR07]

demonstrated that staged transitions are preferred for visually track-
ing changes and slightly reduce errors.

Layering is similar to staging, as sub-transitions precede after one
another. However, layering typically is applied to introduce ob-
jects of a data graphic in a piece-meal fashion. Also, momentary
pauses or dwells are applied between the sub-transitions. Layering
follows a formula of sub-transitions triggering after the previous sub-
transition ends, with a delay in-between called a dwell that allows
the audience to apprehend newly introduced objects. According to
Schwabish [Sch19], layering is an effective technique to manage the
audience’s attention as you ask them to follow the progression of
presented information.

Staggering is the incremental or distributed delay of animations’
start times across a collection of objects’ sub-transitions. Typically
staggering is applied to data glyphs or axes & legends as the order-
ing of start times is based on data or visual attributes. The mapping
for each objects’ animation start time can be defined by sequential,
linear, ordinal, or cardinal functions from a single trigger point.
Staggering only relates to the start time of an objects’ sub-transition;
sub-transitions are not required to precede each other. Our formu-
lation of staggering differs from that of Chevalier et al. [CDF14],
where objects move after the previous object comes to rest. They
found that staggering has negligible, or even negative, impact on an
observer’s ability to track multiple objects.

Looping is a cyclic succession of transitions that loops back to the
start. Sub-transitions occur one after another in a cycle. Loops are
similar in form to staging and layering, however the initial sub-
transition animates after the last transition - thus closing the loop.
This repetitive technique is often used to display cyclic temporal
data. According to Lena Groeger of ProPublica: “looping makes us
notice differences because our attention can shift around to different
places” [Gro15].

5. Semi-Structured Ideation Study

To understand how designers think about and approach authoring
animated data graphics, we conducted an ideation study with partici-
pants possessing experience in graphic, visualization, and animation
design. We use the three paradigms from Section 2.1 as inspirational
exemplars and asked participants to discuss how they would author
six given animated transitions conceptually. We seek to answer the
following three research questions:

• Q1: Among the graphical, temporal, and data components of an
animated transition, which are more commonly associated with a
preferred authoring paradigm?

• Q2: How do the characteristics of an animated transition (e.g.,
transition type) affect the participants’ choice of authoring
paradigms?

• Q3: What implications do the participants’ preferences have on
the design of authoring systems and interfaces?

We instructed the participants to draw from their previous experi-
ence designing animated graphics, but also to conceive of computer-
assisted concepts that would be useful for manipulating data-bound
visualizations and transitions. We chose this semi-structured ideation
format over a re-construction task with an existing tool (e.g.,Adobe

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

After Effects [Ado20a]) because we did not want a particular tool
to constrain the participants’ thinking. We wanted designers to con-
sider all relevant authoring paradigms. Furthermore, creating ani-
mated data graphics with current design tools is time-consuming;
an ideation study allows participants to experience a breadth of
animated transitions in a reasonable amount of time.

5.1. Tasks

For each task, we asked participants to discuss how they would
author a given animated transition. We selected 12 animated tran-
sition instances from our survey, these instances originate from
the following 4 examples: The Timing of Baby Making by Am-
ber Thomas [Tho17]; Twenty Years of the NBA Redrafted by Rus-
sell Goldenberg [Gol17]; I’m Not Feeling Well by Gabriel Gi-
anordoli [GSBS19]; A visual introduction to machine learning by
Stephanie Yee and Tony Chu [YC15]. We chose these animated
transition instances based on their coverage of the design space from
Section 4 and breadth of graphical complexity. The 12 instances
represent the 10 transition types from our design space. We asked
each participant to complete 6 tasks (6 of 12 total).

5.2. Participants

We recruited 14 designers (10 female, 4 male) from the Atlanta
metropolitan area. On average the participants were 27.9 years old
(min = 22; max = 39). Most of them are academics (2 undergradu-
ate students, 10 graduate students), and 2 participants are working
professionals. Their years of experience in graphic design is: less
than 1 yr = 1 (7.1%); 1-2 yrs = 4 (28.6%); 2-5 yrs = 6 (42.9%); 5-8
yrs = 0 (0%); more than 8 yrs = 3 (21.4%). The distribution of their
experience in creating charts, infographics, and data visualizations
is: none = 1 (7.1%); less than 1 yr = 2 (14.3%); 1-2 yrs = 7 (50.0%);
2-5 yrs = 2 (14.3%); 5-8 yrs = 0 (0%); more than 8 yrs = 2 (14.3%).
Participants reported using the following categories of tools to cre-
ate data graphics: vector editors = 11 (78.6%); presentation tools =
11 (78.6%); spreadsheets = 8 (57.1%); visualization software = 7
(50.0%); programming toolkits = 7 (50.0%); image editing tools = 6
(42.9%); infographic tools = 1 (7.1%).

The prevalence of participants’ experience in creating profes-
sional animations is: none = 0 (0.0%); less than 1 yr = 10 (71.4%);
1-2 yrs = 4 (28.6%). When asked about the infrequence of their
experience creating animated graphics, many participants responded
in regards to their professional experience creating animations, but
they had additional years of experience in the classroom. Partici-
pants reported creating the following categories of animations: UX
animation = 8 (57.1%); interactive visualizations = 6 (42.9%); ef-
fects animation = 4 (28.7%); 3D animation = 4 (28.6%); character
animation = 3 (21.4%); motion graphics = 3(21.4%); data narratives
= 2 (14.3%); stop motion = 0 (0.0%). Participants reported using
the following tools for creating animations: Adobe After Effects =
9 (64.3%); InVision = 6 (42.9%); Microsoft PowerPoint / Keynote
= 5 (35.7%); Blender = 3 (21.4%); Autodesk Maya = 2 (14.3%);
Programming Toolkits = 2 (14.3%).

5.3. Experimental Setup

The study took place in a laboratory setting, with each session
taking 1.5 hours. Sessions were audio recorded and participants in-
teracted with a 2880x1800 screen laptop. Participants first watched
an 8-minute informational video that explains fundamental data visu-
alization concepts and the three authoring paradigms. The informa-
tional video highlights the differences between the three paradigms:
keyframing as declaring a time and property for the system to tween
between states; procedural as a system of rules that updates graphics
based on specified parameters or events for each frame of the ani-
mation; and presets & templates as predetermined transitions that
are applied to graphics using relative timing.

During the task portion, participants worked on 6 (out of 12) total
animated transition instances originating from 2 (out of 4) examples.
For each task, participants first familiarized themselves with the
example on a Chrome web browser for 3-5 minutes to understand the
context of the animations. Participants then completed a worksheet-
guided analysis and an authoring ideation task.

Worksheet-Guided Analysis: We presented each animation as a
slowed-down screen-capture via QuickTime Player. Upon viewing
the animation, we prompted the participant to fill-out a worksheet.
The worksheet assists in building and externalizing participants’
understanding of the animated transition in terms of the object,
graphics, data, and timing dimensions proposed in Section 3. The
purpose of the worksheet was not to test participants’ abilities to
analyze animated transitions. Therefore, participants were provided
answers upfront (during pilot studies, data change and duration
were difficult to discern from a screen-capture alone), and corrected
if they made an error during analysis. Completing the worksheet
was a prerequisite for the participant to discuss how they would
conceptually author the animated transition.

Authoring Ideation Task: We asked the participants how they would
approach authoring the animated transition instance in a visual au-
thoring system rather than textual programming. We prompted them
to consider three authoring paradigms presented in the informa-
tional video, and encouraged them to think creatively beyond the
paradigms if necessary. We also asked the participants to think-
aloud; drawing on past experiences with familiar tools to imagine
useful system concepts. We encouraged participants to sketch ideas
on paper. Based on their initial ideas and sketches, we asked follow-
up questions and urged participants to consider deeply how they
would author each component of the animated data graphic.

Upon completing the 6 tasks participants answered debrief ques-
tions to summarize their ideas, provide additional thoughts, and
reflect on their past design experiences.

5.4. Analysis

We analyzed the audio recordings from each task. We did not include
the worksheet-guided analysis recordings, as they do not include
discussions on authoring. In total, we recorded 84 completed tasks
(6 tasks × 14 participants). We transcribed each task, including
in-situ references to participants’ sketches.

We sought to answer our three research questions by coding

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

TASK
ID

EXAMPLE
NAME

TRANSITION
TYPE

A1 NBA Redra� Ordering/Re-configuring

A2 NBA Redra� Highlighting/Filtering

A3 NBA Redra� Data Encoding Alteration

A4 Baby Making Appear/Disappear

A5 Baby Making Data Ticker

A6 Baby Making Combine/Partition

B1 Not Feeling Well Data Encoding Alteration

B2 Not Feeling Well Camera Alteration

B3 Visual Intro to ML Enter/Exit

B4 Visual Intro to ML Data Encoding Alteration

B5 Visual Intro to ML Visual Alteration

B6 Visual Intro to ML Simulated Process

CONDITION B

ALL TASKS

CONDITION A
PD

28.6%

0%

42.9%

0%

42.9%

0%

14.3%

71.4%

57.1%

71.4%

71.4%

100%

41.7%

Procedural

85.7%

85.7%

71.4%

14.3%

71.4%

100%

71.4%

57.1%

85.7%

100%

71.4%

42.9%

71.4%

KF
Keyframe

PT

42.9%

85.7%

57.1%

100%

57.1%

42.9%

28.6%

28.6%

42.9%

28.6%

28.6%

0%

45.2%

Presets &
Templates

Table 1: Distribution of 12 animated transition instances employed
across conditions A & B. Results show percentage of participants
that described an authoring paradigm for each task.

the transcripts as follows: First, code the authoring paradigm ex-
pressed by the participant (procedural animation, keyframe ani-
mation, and/or presets & templates); Q1 - code the animated data
graphic by the object, graphic, data and timing dimensions from
Section 4; Q2 - code each animated transition instance based on the
transition types from Section 4; Q3 - apply open coding to identify
user interface ideas and system features proposed by the participant.

We only coded responses relevant to authoring. Many utterances
were not relevant: participants often asked questions about the data
graphic or the task at hand; some utterances were unclear on au-
thoring intent; while others were part of the participant’s attempt to
formulate their thoughts. Two authors individually coded transcripts
from 4 sessions (conditions A & B). We measured the inter-coder
agreement on authoring paradigm codes using Cohen’s Kappa (K)
[Coh60]. Based on Kandis and Loch’s scale [LK77] our codes are
in “substantial agreement” as K = 0.69. Once in agreement of codes,
the primary author completed the coding for all 14 sessions.

5.5. Results

To help explain the results of our analysis, we denote the three
authoring paradigms with the following shorthand: [keyframe (KF),
procedural (PD), presets & templates (PT)]. Overall, across all
authoring tasks (84 total, 6 tasks × 14 participants), the participants
described authoring with keyframe animation most frequently [KF:
71.4%], followed by presets & templates [PT: 45.2%], and finally
procedural animation [PD: 41.7%].

Q1: Which animation components are more commonly associated
with a preferred authoring paradigm?

Co-occurrence analysis of animation components (e.g., object, tim-
ing, data) identified the elements that participants frequently modify
when authoring with either of the three authoring paradigms. In
this portion of the analysis, percentages are based on a denominator
equal to the total number of tasks discussed by participants for each
authoring paradigm (e.g., 49 is the total number of tasks where par-
ticipants discussed glyphs and keyframe animation; 60 is the total
number of tasks where participants discussed keyframe animation;
therefore during 49/60 or 81.6% of tasks, participants discussed
authoring with keyframe animation using glyphs).

Object Dimension:
Data Glyphs: Participants most frequently employed procedural
animation and keyframe animation when working with glyphs [KF:
88.6%, PD: 81.7%, PT: 23.8%]. Participants described procedural
conditions or rules that would apply for all glyphs. Similarly, they
also described keyframes as being repeated for glyphs. However,
some participants struggled to come up with the “apply to all glyphs”
concept – P7 claimed: “If I don’t have so many objects - maybe only
10 objects are moving. I think I’m comfortable with After Effects,
but like this one, I guess there are hundreds of objects moving
at the same and it must be complicated.” This is a fair comment
if the participant must manually create hundreds of keyframes or
procedures for hundreds of glyphs. However, the generative concept
of “apply to all glyphs” or “repeat for glyphs” that many participants
described alleviates this manual burden.

Visual States: Participants also considered the entire static graphic at
rest – they expressed how they would create animations from visual
states more frequently with keyframe animation and presets & tem-
plates [KF: 48.3%, PD: 20%, PT: 42.1%]. Participants described
how keyframe animation works well for setting two different data
graphics as frames and allowing the system to link the glyphs by
data, interpolating the properties that transition between each state.
Participants also frequently described applying presets & templates
to frames in a “slide show” or “page viewer” interface. Participants
described how presets & templates could be applied to an entire
static frame to create a transition.

Groups: Furthermore, participants described groups as a way to
structure animations, most frequently they described groups when
working with keyframe animation or procedural animation [KF:
16.7%, PD: 14.3%, PT: 5.3%]. Groups were typically created via
procedural statements such as ”group glyphs by data attribute”.
Participants desired to apply keyframes to groups of data glyphs to
achieve staging – for example P2 explained how they would first
“create different groups for both blue and green [rectangles]” to
rotate them all together and then transition the rectangles y-position.
Participants also desired groups as a means to order an otherwise
cluttered timeline interface.

Timing Dimension: We considered how participants authored tim-
ing effects (e.g., delay, duration, easing) in relation to the three
authoring paradigms. We found that participants often expressed
the need to create functions based on data or visual attributes that
specify delay functions for glyphs [KF: 43.3%, PD: 68.6%, PT:
44.7%]. We also found that participants described presets & tem-
plates as a method to stagger delay based on data or visual attributes,
P4 referred to each glyph animating after the other glyph as the
“domino effect.” Some participants described the process of creating

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

staging frequently with keyframe animation and presets & templates
[KF: 11.7%, PD: 8.6%, PT: 18.4%]. Participants described adding
keyframes for visual attributes or encodings of glyphs to stage a
complex transition; while other participants described the relational
timing of presets & templates (e.g.,“animate after”, “animate with”)
as a straight-forward method to stage transitions after one another.
When it comes to the duration of transitions, participants did not
have a clear preference for authoring paradigms [KF: 30%, PD:
28.6%, PT: 34.2%]. Finally, participants seldom described easing
functions [KF: 5%, PD: 2.9%, PT: 2.6%]. This could be related to a
lack of identifying easing in the worksheet-guided analysis.

Data Dimension: We associated how participants described dif-
ferent aspects of datasets (e.g., data tuples, data attributes, data
transforms) with each of the authoring paradigms. We found that
participants most frequently described procedural statements that
altered the data tuples bound to glyphs [KF: 23.3%, PD: 34.3%, PT:
10.5%]. Participants frequently described procedural statements to
alter the data transforms of the glyphs to achieve a change in bound
data tuples. Therefore, data transforms were more frequently asso-
ciated with procedural animation than other authoring paradigms
[KF: 13.3%, PD: 28.6%, PT: 10.5%]. Participants most frequently
used data attributes when describing procedural rules or statements
[KF: 50%, PD: 71.4%, PT: 44.7%]. These procedural rules include
the previously mentioned delay functions, pivoting data transforms
by a data attribute, or creating rules for data encodings. Data at-
tributes were also expressed as ingredients for the other two au-
thoring paradigms. Participants created keyframes by altering a
data encoding’s data attribute. Participants also discussed creating
pre-defined timing effects based on a selected data attributes.

Q2: How do the characteristics of an animated transition (e.g., tran-
sition type) affect the participants’ choice of authoring paradigms?

The results show that participants have preferred authoring
paradigms for certain transition types proposed in Section 4. In
Table 1 we compare authoring paradigms across each task (row).
The columns of Table 1 describe transition types and distribution of
authoring paradigms expressed by participants. The rows do not to-
tal to 100% as participants expressed multiple authoring paradigms
for a single task. In this portion of the analysis, percentages are
based on a denominator of 7 participants completing each task.

Participants discussed creating appear/disappear transitions using
presets & templates more than any other paradigm [KF: 14.3%, PD:
0%, PT: 100%]. Participants cited the “lack of data bindings" and
“small number of graphic objects" as justification for using presets
& templates. They also remarked that such transitions are similar
to the appear/disappear presets from familiar tools. Participants
described creating simulated processes with procedural authoring
most frequently [KF: 42.9%, PD: 100%, PT: 0.0%]. Participants
claimed that state-based simulations would most easily translate
to procedural rules. According to participants, keyframe animation
best suits combine/partition transitions [KF: 100%, PD: 0%, PT:
42.9%]. Keyframe animation provides a visual timeline to control
the combination of objects between these key states. Participants
also imagined that keyframing could link partial objects to com-
bined objects based on underlying data (and vice versa). Participants
favored using keyframe animation or presets & templates for high-
lighting/filtering transitions [KF: 85.7%, PD: 0%, PT: 85.7%].

1

2 3

Figure 4: Participants’ user interface sketches for an animated data
graphic authoring tool. (1) P12’s interface combines storyboarding
and timeline views, (2) P5’s concept for modifying a transition’s time
components such as delay functions, (3) P10’s data table supports
ordering the delay of glyphs’ transitions by visual attributes such as
y-position

For all other transition types, participants did not have an over-
whelming preference for an authoring paradigm. The only cases
where 0 participants described using an authoring paradigm for an
transition types were: procedural animation for highlighting/filtering,
appear/disappear, and combine/partition [PD: 0%]; and presets &
templates for simulated processes [PT: 0%]. Among those remaining
transition types, participants described authoring at least once for
the three paradigms.

Q3: What implications do the participants’ preferences have on user
interface design and system features?

We asked participants to comment on useful user interface designs
and system concepts for an authoring system during each task. Par-
ticipants often explained how interfaces from familiar tools or com-
pletely novel concepts would be useful for authoring animated data
graphics. In this section we analyzed the frequency of user inter-
face designs and system concepts described by the 14 participants.
Percentages are based on a denominator of 14 (14 total participants).

Storyboards: 9 of 14 participants [64.3%] commented on how a
slide show or storyboarding interface would be useful for authoring
animated data graphics. These storyboards serve as representations
of high-level story points for quick specification, sharing, and pre-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

view. As seen at the top of P12’s sketch in Figure 4.1 – the stages of
an animation are displayed as storyboards with arrows between each
storyboard that represent the animated transition between each stage.
P12 envisions that “transition arrows” are selected to edit animation
properties of that transition. Beyond smaller staged transitions, par-
ticipants desired to create and layout slides or storyboards for each
crucial story point in their larger narrative. P4 and P10 cited the
need to quickly iterate on these key story points at a high-level and
share storyboard ideas with colleagues or stakeholders before invest-
ing time to author animations between story points. 10 participants
[71.4%] explained that animation previews would be helpful to com-
pare and contrast potential animation design options. According to
P14: “Previews would help. When you set an effect...you can see the
preview in the background...So that would be helpful because [the
system] could create a GIF. You could watch it happen [and] decide
if you need to modify [the animation] in real time.”

Timelines: 8 of 14 participants [57.1%] described how they would
want to use a timeline interface to author animations. This correlates
with the participants favoring keyframe animation for the majority
of tasks. As seen at the bottom of P12’s sketch in Figure 4.1 – the
stages of a transition could be created as keyframes on a timeline.
Figure 4.1 depicts P12’s combined storyboard and timeline interface
design. In this design, storyboards are linked together by transitions
and further specification of transitions occurs in a timeline interface
– this dual interfaces appears in related prototyping tools such as
InVision [Inv20]. We hypothesize that that a similar dual interface
would be useful for authoring animated data graphics. Participants
had two approaches for creating keyframes: by transforming the pre-
existing data graphic in the system (e.g., changing a visual attribute
or visual encoding), or by importing static data graphics created in
another tool and relying on the system to link the two static frames
by association.

Timing: Participants considered many different options to design
the timing of animations. 7 participants [50.0%] wanted to order
glyphs in a list interface to specify delay based on data or visual at-
tributes as seen in P10’s sketch in Figure 4.3. 6 participants [42.9%]
described using a formula editor interface to set duration or delay
based on computed functions from data or visual attributes such as
P5’s drawing in Figure 4.2. While 6 participants [42.9%] described
the need to select timing effects from a list of presets & templates
such as the “domino effect” described by P4 to stagger glyphs’ delay.
4 participants [28.6%] described using relational timing methods
such as “animate after” or “animate with” to stage animations.

Working with data: 5 participants [35.7%] described the need to
have a data table interface for inspecting data. All but one participant
[92.9%] described the system concept to link glyphs by their un-
derlying data tuples or data transforms. Participants also described
the desire to have system concepts to assist with data-driven gener-
ation: 11 participants [78.6%] described auto-generation of visual
encodings, 6 participants [42.9%] described the need for the sys-
tem to provide highlighting or filtering options based on a selected
data attribute, while 6 participants [42.9%] desired the ability to
sort glyphs by data attributes, and 5 participants [35.7%] described
grouping glyphs by a categorical data attribute.

6. Discussion

The study results show that keyframe animation is an authoring
paradigm preferred by many participants in a majority of tasks, with
the exception of three transition types: appear/disappear, simulated
process, and camera alteration. P11 remarked that “I may not nec-
essarily use the term keyframe all the time but it’s how I think”. A
likely reason is the participants’ experience and familiarity with
keyframing tools. 9 of 14 participants were familiar with Adobe
After Effects; 6 of 14 reported using InVision. Participants also
indicated that they preferred keyframe animation due to its ability
to define transitions on top of a static data graphic.

When data becomes an integral part of animated graphics, how-
ever, current keyframing tools become inadequate. First, animated
data graphics often involve hundreds or more data glyphs. It is dif-
ficult to keep track of and operate on all of them. “I think the hard
thing would be when you have so many elements animated in one
scene or one keyframe. That would be really hard to keep tracking,
make sure all the delay or all of the duration time makes sense..”
(P6). Second, it takes a significant amount of time and effort to
specify animation behaviors of glyphs based on data. In completing
task 4, P4 mentioned “if you do kind of like a trim path animation
in After Effects it takes an immense amount of time to do. Umm,
because each of the shapes that you’re trying to animate have to be
individual shapes and they all have their own individual trim path
property.” It is essential that future authoring tools for animated data
graphics support functionalities such as automatic mapping of data
to animation properties, automatic transition types like data ticker,
and batch visual alteration.

While keyframe animation may be the most popular paradigm,
the other two paradigms are indispensable for certain tasks. For
example, in task 1, a group of rectangle glyphs representing the
drafted NBA players animate to update their positions as their verti-
cal positions’ data encodings change. The animations do not happen
simultaneously for all the glyphs; instead, one glyph starts animating
after another. This kind of behavior may be tedious to specify at
the glyph level under the keyframe paradigm, and P1 preferred to
describe this behavior as the “domino effect” and wished there were
such an animation template to be readily applied.

Multiple participants also noted the need to combine multiple
paradigms so that the authoring tools strike a balance between ease
of use and control. In particular, the presets & templates paradigm
is acknowledged to be easy to use, but it also implies a lack of
precise control: “And so I think that After Effects allows you a
maximum control. But then the downside is you can’t [create] as
fast as you would with Keynote. And so I think I want a tool that is
a combination of both of those [concepts].” (P4). To support such
needs, the participants provided inspirational design ideas for user
interfaces. In Section 5.5, the storyboard interface and the timeline
interface may be tightly coupled so that users can easily navigate
between these two paradigms.

Finally, some of the animations are still best expressed in the
procedural paradigm: at the component level, the results show that
the participants preferred the procedural paradigm for timing com-
ponents such as delay function based on data or visual attributes,
or operations related to data components; at the composition level,
transition types such as simulated process are easier to describe

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Thompson et al. / Understanding Animated Data Graphics

procedurally as well. The procedural paradigm is closely related to
programmatic thinking, even if the interface may not be in the form
of a programming language: “if we are still using the thinking of
program then we’re still there. We are not far from programming”
(P7). We may devise novel interfaces for the procedural paradigm
without programming, but the ability to think procedurally may be
essential in the authoring of animated data graphics.

7. Conclusion and Future Work

We presented the results of an ideation study that examines users’
preferences of authoring paradigms for animated data graphics.
This study is based on an analysis of object, graphic, data and
timing primitives and their compositions in the design space of
animated data graphics. We found that keyframe animation is the
most preferred paradigm, but certain animation components and
transition types are better described procedurally or in presets &
templates.

In our future work, we aim to design and implement an animation
authoring tool that offers a combination of these paradigms to help
authors balance between ease of use and expressive control. We en-
vision this authoring tool should allow authors to produce animated
data graphics, without writing textual programming. Furthermore,
this authoring system should allow authors to construct narrative
sequences of animated data graphics and share them on the web.

8. Acknowledgments

This work was supported in part by Adobe Research.

References

[Ado19] ADOBE INC.: Expression basics: Learn expression basics to link
animations in Adobe After Effects, Nov 2019. URL: http://helpx.
adobe.com/after-effects/using/expression-basics.html. 2

[Ado20a] ADOBE INC.: Adobe After Effects, 2020. URL: http://www.
adobe.com/products/aftereffects.html. 1, 2, 3, 7

[Ado20b] ADOBE INC.: Adobe Character Animator, 2020. URL: http:
//www.adobe.com/products/character-animator.html. 3

[Ado20c] ADOBE INC.: Adobe XD, 2020. URL: http://www.adobe.
com/products/xd.html. 1, 2

[AHRL∗15] AMINI F., HENRY RICHE N., LEE B., HURTER C., IRANI P.:
Understanding Data Videos: Looking at Narrative Visualization through
the Cinematography Lens. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (2015), CHI ’15, ACM, pp. 1459–
1468. doi:10.1145/2702123.2702431. 3

[AMM∗08] AIGNER W., MIKSCH S., MÜLLER W., SCHUMANN H.,
TOMINSKI C.: Visual Methods for Analyzing Time-Oriented Data. IEEE
Transactions on Visualization and Computer Graphics 14, 1 (2008), 47–
60. doi:10.1109/TVCG.2007.70415. 1

[App20] APPLE INC.: Keynote - Apple, 2020. URL: http://www.apple.
com/keynote/. 1

[ARL∗17] AMINI F., RICHE N. H., LEE B., MONROY-HERNANDEZ
A., IRANI P.: Authoring Data-Driven Videos with DataClips. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (2017), 501–
510. doi:10.1109/TVCG.2016.2598647. 3, 4

[Ble02] BLENDER: Blender - Free and Open 3D Creation Software, 20202.
URL: http://www.blender.org. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics
17, 12 (2011), 2301–2309. doi:10.1109/TVCG.2011.185. 2, 3

[Bre20] BREMER N.: Visual Cinnamon, 2020. URL: http://www.
visualcinnamon.com/. 4

[Bro88] BROWN M. H.: Algorithm Animation. MIT Press, Cambridge,
MA, USA, 1988. 2

[CDF14] CHEVALIER F., DRAGICEVIC P., FRANCONERI S.: The Not-
so-Staggering Effect of Staggered Animated Transitions on Visual Track-
ing. IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2241–2250. doi:10.1109/TVCG.2014.2346424. 6

[Cha18] CHALBI A.: Understanding and designing animations in the
user interfaces. PhD thesis, Université de Lille, Apr 2018. URL: https:
//hal.archives-ouvertes.fr/tel-01881889. 3

[Cla19] CLARK D.: Why data visualisation needs a play but-
ton, 2019. URL: https://flourish.studio/2019/02/07/
audio-talkie-visualisation-data-stories/. 3

[Coh60] COHEN J.: A coefficient of agreement for nominal scales. Ed-
ucational and Psychological Measurement 20, 1 (Apr 1960), 37–46.
doi:10.1177/001316446002000104. 8

[CRP∗16] CHEVALIER F., RICHE N. H., PLAISANT C., CHALBI A.,
HURTER C.: Animations 25 Years Later: New Roles and Opportunities.
In Proceedings of the International Working Conference on Advanced
Visual Interfaces (Jun 2016), AVI ’16, ACM, pp. 280–287. doi:10.
1145/2909132.2909255. 1, 3

[DCL08] DAVIS R. C., COLWELL B., LANDAY J. A.: K-sketch: A
‘Kinetic’ Sketch Pad for Novice Animators. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2008), CHI ’08,
ACM, pp. 413–422. doi:10.1145/1357054.1357122. 1

[Few06] FEW S.: Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly Media, Inc., 2006. 2

[Fis10] FISHER D.: Animation for Visualization: Op-
portunities and Drawbacks. In Beautiful Visualiza-
tion Edition. O’Reilly Media, Apr 2010. URL: https:
//www.microsoft.com/en-us/research/publication/
animation-for-visualization-opportunities-and-drawbacks/.
3

[Gol17] GOLDENBERG R.: Twenty Years of the NBA Redrafted, Mar
2017. URL: http://pudding.cool/2017/03/redraft/. 7

[Goo20] GOOGLE NEWS LAB: Visualizing Google data, 2020.
URL: http://trends.google.com/trends/story/US_cu_
6fXtAFIBAABWdM_en. 4

[Gro15] GROEGER L.: That’s the Power of Loops, 2015. URL: http:
//www.youtube.com/watch?v=zd0YQAgu3dI. 6

[GSBS19] GIANORDOLI G., SALABERRY L., BIERNATH A., SYAM U.:
I’m Not Feeling Well, 2019. URL: http://www.imnotfeelingwell.
com/. 7

[Hal20] HALLORAN N.: Neil Halloran, 2020. URL: http://www.
neilhalloran.com/. 4

[HR07] HEER J., ROBERTSON G.: Animated Transitions in Statistical
Data Graphics. IEEE Transactions on Visualization and Computer Graph-
ics 13, 6 (2007), 1240–1247. doi:10.1109/TVCG.2007.70539. 3, 4,
6

[HS93] HUDSON S. E., STASKO J. T.: Animation Support in a User In-
terface Toolkit: Flexible, Robust, and Reusable Abstractions. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology
(1993), UIST ’93, ACM, pp. 57–67. doi:10.1145/168642.168648. 1

[Inv20] INVISIONAPP INC.: Invision, 2020. URL: http://www.
invisionapp.com/. 1, 10

[Kah17] KAHN J.: Rekapi: A JavaScript Keyframe Library, Dec 2017.
URL: http://jeremyckahn.github.io/rekapi/doc/. 2

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://helpx.adobe.com/after-effects/using/expression-basics.html
http://helpx.adobe.com/after-effects/using/expression-basics.html
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/character-animator.html
http://www.adobe.com/products/character-animator.html
http://www.adobe.com/products/xd.html
http://www.adobe.com/products/xd.html
https://doi.org/10.1145/2702123.2702431
https://doi.org/10.1109/TVCG.2007.70415
http://www.apple.com/keynote/
http://www.apple.com/keynote/
https://doi.org/10.1109/TVCG.2016.2598647
http://www.blender.org
https://doi.org/10.1109/TVCG.2011.185
http://www.visualcinnamon.com/
http://www.visualcinnamon.com/
https://doi.org/10.1109/TVCG.2014.2346424
https://hal.archives-ouvertes.fr/tel-01881889
https://hal.archives-ouvertes.fr/tel-01881889
https://flourish.studio/2019/02/07/audio-talkie-visualisation-data-stories/
https://flourish.studio/2019/02/07/audio-talkie-visualisation-data-stories/
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/2909132.2909255
https://doi.org/10.1145/2909132.2909255
https://doi.org/10.1145/1357054.1357122
https://www.microsoft.com/en-us/research/publication/animation-for-visualization-opportunities-and-drawbacks/
https://www.microsoft.com/en-us/research/publication/animation-for-visualization-opportunities-and-drawbacks/
https://www.microsoft.com/en-us/research/publication/animation-for-visualization-opportunities-and-drawbacks/
http://pudding.cool/2017/03/redraft/
http://trends.google.com/trends/story/US_cu_6fXtAFIBAABWdM_en
http://trends.google.com/trends/story/US_cu_6fXtAFIBAABWdM_en
http://www.youtube.com/watch?v=zd0YQAgu3dI
http://www.youtube.com/watch?v=zd0YQAgu3dI
http://www.imnotfeelingwell.com/
http://www.imnotfeelingwell.com/
http://www.neilhalloran.com/
http://www.neilhalloran.com/
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1145/168642.168648
http://www.invisionapp.com/
http://www.invisionapp.com/
http://jeremyckahn.github.io/rekapi/doc/


Thompson et al. / Understanding Animated Data Graphics

[Kan20] KANTAR: Information is Beautiful Awards, 2020. URL: http:
//www.informationisbeautifulawards.com/. 4

[KCG∗14] KAZI R. H., CHEVALIER F., GROSSMAN T., ZHAO S., FITZ-
MAURICE G.: Draco: Bringing Life to Illustrations with Kinetic Tex-
tures. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2014), CHI ’14, ACM, pp. 351–360. doi:
10.1145/2556288.2556987. 1, 2, 3

[KCGF14] KAZI R. H., CHEVALIER F., GROSSMAN T., FITZMAURICE
G.: Kitty: Sketching Dynamic and Interactive Illustrations. In Proceed-
ings of the ACM Symposium on User Interface Software and Technol-
ogy (2014), UIST ’14, ACM, pp. 395–405. doi:10.1145/2642918.
2647375. 1

[KHBB16] KRAMER J.-P., HENNINGS M., BRANDT J., BORCHERS
J.: An Empirical Study of Programming Paradigms for Animation. In
IEEE/ACM Cooperative and Human Aspects of Software Engineering
(CHASE) (May 2016), IEEE, pp. 58–61. doi:10.1109/CHASE.2016.
020. 3

[Kil19] KILN ENTERPRISES LTD: Flourish Studio, 2019. URL: http:
//flourish.studio. 2, 3

[KS02] KERREN A., STASKO J. T.: Chapter 1: Algorithm Animation.
In Software Visualization (Berlin, Heidelberg, Germany, 2002), Diehl S.,
(Ed.), Springer-Verlag, pp. 1–15. 2

[LK77] LANDIS J. R., KOCH G. G.: The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159–174.
doi:10.2307/2529310. 8

[LPR19] LIN PEDERSEN T., ROBINSON D.: A Grammar of Animated
Graphics: gganimate, 2019. URL: http://gganimate.com/. 3

[LTW∗18] LIU Z., THOMPSON J., WILSON A., DONTCHEVA M., DE-
LOREY J., GRIGG S., KERR B., STASKO J.: Data Illustrator: Aug-
menting Vector Design Tools with Lazy Data Binding for Expressive
Visualization Authoring. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (2018), CHI ’18, ACM, pp. 1–13.
doi:10.1145/3173574.3173697. 3

[MHRL∗17] MCKENNA S., HENRY RICHE N., LEE B., BOY J., MEYER
M.: Visual Narrative Flow: Exploring Factors Shaping Data Visualization
Story Reading Experiences. Computer Graphics Forum 36, 3 (2017),
377–387. doi:10.1111/cgf.13195. 5

[Mic20] MICROSOFT CORP.: Microsoft Powerpoint, 2020. URL: http:
//products.office.com/en-us/powerpoint. 1, 3

[New18] NEW YORK TIMES: 2018: The Year in Visual Stories and Graph-
ics, 2018. URL: http://www.nytimes.com/interactive/2018/us/
2018-year-in-graphics.html. 4

[Pri20] PRINCIPLE: Principle, 2020. URL: http://www.
principleformac.com/. 1

[Pud20] PUDDING, THE: The Pudding Archives, 2020. URL: http:
//pudding.cool/archives/. 4

[RF06] REAS C., FRY B.: Processing: programming for the media
arts. AI & Society 20, 4 (Aug 2006), 526–538. doi:10.1007/
s00146-006-0050-9. 2, 3

[RHR16] ROBERTS J. C., HEADLEAND C., RITSOS P. D.: Sketching
Designs Using the Five Design-Sheet Methodology. IEEE Transactions
on Visualization and Computer Graphics 22, 1 (2016), 419–428. doi:
10.1109/TVCG.2015.2467271. 3

[Sch19] SCHWABISH J.: 4 Observations on Animating Your Data Visu-
alizations, Jul 2019. URL: https://link.medium.com/OBs05OgeD3.
6

[Ste20] STEFANER M.: Truth & Beauty, 2020. URL: http://
truth-and-beauty.net/. 4

[Tho17] THOMAS A.: The Timing of Baby Making, May 2017. URL:
https://pudding.cool/2017/05/births/. 7

[Tou20] TOUCH DESIGNER: TouchDesigner by Derivative, 2020. URL:
http://www.derivative.ca. 2

[Tum20] TUMULT: Tumult Hype 4.0, 2020. URL: http://www.tumult.
com/hype/. 1

[WHC15] WALNY J., HURON S., CARPENDALE S.: An Exploratory
Study of Data Sketching for Visual Representation. Computer Graphics
Forum 34, 3 (2015), 231–240. doi:10.1111/cgf.12635. 3

[Wic09] WICKHAM H.: ggplot2: Elegant Graphics for Data Analysis.
Springer, 2009. 3

[WSC17] WEXLER S., SHAFFER J., COTGREAVE A.: The Big Book of
Dashboards: Visualizing Your Data Using Real-World Business Scenarios.
John Wiley & Sons, 2017. 2

[Wu20] WU S.: Shirley Xueyang Wu, 2020. URL: http://sxywu.com/.
4

[YC15] YEE S., CHU T.: A visual introduction to ma-
chine learning, Jul 2015. URL: http://www.r2d3.us/
visual-intro-to-machine-learning-part-1/. 7

[ZS03] ZONGKER D. E., SALESIN D. H.: On Creating Animated Presen-
tations. In Proceedings of the ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2003), SCA ’03, Eurographics Association,
pp. 298–308. doi:10.5555/846276.846319. 1

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://www.informationisbeautifulawards.com/
http://www.informationisbeautifulawards.com/
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1109/CHASE.2016.020
https://doi.org/10.1109/CHASE.2016.020
http://flourish.studio
http://flourish.studio
https://doi.org/10.2307/2529310
http://gganimate.com/
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1111/cgf.13195
http://products.office.com/en-us/powerpoint
http://products.office.com/en-us/powerpoint
http://www.nytimes.com/interactive/2018/us/2018-year-in-graphics.html
http://www.nytimes.com/interactive/2018/us/2018-year-in-graphics.html
http://www.principleformac.com/
http://www.principleformac.com/
http://pudding.cool/archives/
http://pudding.cool/archives/
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1109/TVCG.2015.2467271
https://link.medium.com/OBs05OgeD3
http://truth-and-beauty.net/
http://truth-and-beauty.net/
https://pudding.cool/2017/05/births/
http://www.derivative.ca
http://www.tumult.com/hype/
http://www.tumult.com/hype/
https://doi.org/10.1111/cgf.12635
http://sxywu.com/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
https://doi.org/10.5555/846276.846319

