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ABSTRACT
Answering questions with data is a difficult and time-
consuming process. Visual dashboards and templates make
it easy to get started, but asking more sophisticated questions
often requires learning a tool designed for expert analysts.
Natural language interaction allows users to ask questions di-
rectly in complex programs without having to learn how to
use an interface. However, natural language is often ambigu-
ous. In this work we propose a mixed-initiative approach to
managing ambiguity in natural language interfaces for data
visualization. We model ambiguity throughout the process of
turning a natural language query into a visualization and use
algorithmic disambiguation coupled with interactive ambigu-
ity widgets. These widgets allow the user to resolve ambi-
guities by surfacing system decisions at the point where the
ambiguity matters. Corrections are stored as constraints and
influence subsequent queries. We have implemented these
ideas in a system, DataTone. In a comparative study, we find
that DataTone is easy to learn and lets users ask questions
without worrying about syntax and proper question form.
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INTRODUCTION
Data analysis is at the core of many decisions. A product
manager relies on product usage data to prioritize new fea-
ture development, a designer looks at A/B test data to select
the best user interface, and many track expenses to make bet-
ter financial decisions. Visualization makes data analysis eas-
ier by allowing users to look at more data simultaneously and
to more easily see patterns. Unfortunately, creating visualiza-
tions to answer user questions is not easy. To support a wide
variety of users, data analysis and visualization systems need
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to be both flexible and easy to use. General purpose spread-
sheet tools, such as Microsoft Excel, focus largely on offer-
ing rich data transformation operations. Visualizations are
merely output to the calculations in the spreadsheet. Asking
a “visual question” requires users to translate their questions
into operations on the spreadsheet rather than operations on
the visualization. In contrast, visual analysis tools, such as
Tableau,1 creates visualizations automatically based on vari-
ables of interest, allowing users to ask questions interactively
through the visualizations. However, because these tools are
often intended for domain specialists, they have complex in-
terfaces and a steep learning curve.

Natural language interaction offers a compelling complement
to existing data analysis and visualization interfaces. Users
can directly state their questions without having to learn the
interface or translate their questions into spreadsheet or visu-
alization operations. Despite progress in Natural-Language
Processing (NLP), accurately translating natural language
questions into visualizations remains a challenge. Ambiguity
is present at many levels. First the user’s question will likely
be underspecified. For example, does “product” mean prod-
uct category or product name, when both are variables in the
database? Second, there may be many possible answers to the
user’s question. Take a simple query such as “show revenue
for New York City and Washington DC in 2012.” Should the
system return total NYC revenue over all years versus Wash-
ington DC in 2012, or the more likely comparison of both
cities in 2012? Even if we ignore the potential ambiguity of
the language, there are a large number of possible visual rep-
resentations: 1) a stacked bar chart with time on the x-axis
and each set of bars corresponding to each city, 2) a bar chart
with aggregate revenue information, 3) two bar charts, one
for each city, 4) a line chart with a line for each city, 5) a sin-
gle line chart showing aggregate revenue information, and 6)
two separate line charts–one for each city.

In this work we present a mixed-initiative approach for ad-
dressing ambiguity in natural language interfaces for data vi-
sualization in the context of the DataTone system. With Data-
Tone, users type natural language queries to construct visu-
alizations. DataTone parses each query and generates one or
more Data Specifications (DSPs), which are used to query our
datasets. From the data specification and query output, Data-
Tone creates Visual Specifications (VSPs) and generates the
appropriate visualizations. While DataTone ranks the gener-
ated visualizations and returns the highest ranked one to the

1http://www.tableausoftware.com



user, it also retains a model of the ambiguity introduced by
each step in the pipeline–a model that we call the ambigu-
ity space. Ambiguity in DataTone can be resolved algorith-
mically, through direct manipulation by the user, or through
a combination of user and system interaction. The ambigu-
ity space is exposed in the interface through ambiguity wid-
gets. While the widgets themselves are based on traditional
GUI elements, the decision of when to show which widget
and which options are available in each widget stems directly
from our analysis of the text input and our model of ambigu-
ity. The widgets enable users to correct decisions made by
the system in generating visualizations.

As the user manipulates each widget, the remaining wid-
gets dynamically adapt to eliminate impossible or unlikely
choices. Furthermore, the corrections to system decisions are
stored as soft constraints that influence subsequent visualiza-
tion constructions. For example, for the query “show revenue
for New York City and Washington DC in 2012,” DataTone
generates a line chart with two lines, one for each city. If the
user corrects the visualization type to a stacked bar chart, the
next query about revenue over time will result in a stacked bar
chart. This mixed-initiative approach allows the system to
gracefully handle ambiguity and personalize the experience
to each user or session.

To evaluate DataTone, we performed a user study with three
datasets and 16 users using a novel design. We compared
DataTone to IBM’s Watson Analytics, a state-of-the-art com-
mercial product for exploratory data analysis through natural
language. Fourteen of the sixteen participants preferred Data-
Tone to Watson, and all found the ambiguity widgets easy to
use. Furthermore, the participants reported that the availabil-
ity of a correction interface eased their concern for the need
to construct syntactically correct queries.

In building and evaluating the DataTone system, we make the
following contributions:

• An approach for automatically generating visualizations
from natural language queries,
• the ambiguity space, a model of ambiguity for natural lan-

guage queries for data exploration and visualization,
• the design of an interface that includes ambiguity widgets,

GUI elements that allow the end-user to provide feedback
to the system to resolve ambiguity and navigate the ambi-
guity space,
• an algorithm for managing ambiguity corrections over time

through partial constraints,
• and a novel study design for evaluating natural language

interfaces for data analysis.

RELATED WORK
The design and implementation of DataTone builds upon re-
lated work in natural language interfaces for databases, for-
mal specifications of visualizations, automatic visualization
generation, and mixed initiative interface design.

Natural language interfaces for database queries
The problem of constructing natural language interfaces to
databases (NLIDB) has been studied for several decades.

Early systems are based on manually crafted semantic gram-
mars [2] in a knowledge domain. Since it is hard to scale
this approach to other domains, researchers build NLIDBs
that can learn semantic grammars from training examples.
The grammars improve by adding new examples [9, 12, 31,
39], but these methods depend on large, labeled training cor-
pora that are difficult to obtain. Recently, several generic
NLIDBs [14, 13, 21, 20] proposed solutions that don’t re-
quire such training corpora. These systems are designed for
use across different domains and databases. Our work simi-
larly uses content independent approaches that don’t require
customized manual configuration for each database.

Keyword search interfaces over databases are another pop-
ular approach for specifying ad-hoc queries [1, 3, 11]. Re-
cently, there has been a stream of keyword search research [4,
28, 32] to interpret the query intent behind keywords through
supporting Boolean operators [28] and query fragments [4].
Similar to this research, our approach leverages keywords and
query fragments, but in order to generate visualizations we re-
quire a more structured interpretation that specifies how data
is aggregated and filtered. To this end DataTone uses more
sophisticated NLP parsing techniques (e.g., dependencies) to
understand the relationships between keywords and models
any ambiguity present in the query.

Natural language interfaces for visualization
Natural language interfaces for visualizations seek to aug-
ment NLIDB with effective presentations of query results and
to reduce articulatory distance in specifying visualizations.
Cox et. al.’s work [8] is an early, representative example of
integrating natural language and direct manipulation in a data
visualization environment. The range of questions and the
visualization types supported are very limited. In addition,
the system provides no intelligent support for inferring ap-
propriate visualizations. Users have to specify a full query
or a set of partial queries with dialogue in order to produce
a visualization. The Articulate system [30] translates natu-
ral language into visualizations by first mapping a query to
a user task and then determining an appropriate visualization
based on the task and data properties. Commercial applica-
tions such as IBM Watson Analytics, Microsoft Power BI and
Wolfram Alpha2 also integrate natural language querying ca-
pabilities. These systems demonstrate the viability of sup-
porting visual analysis through natural language interfaces.
However, these systems often attempt to remove ambiguity at
the earliest possible step, sidestepping the broader problem.
For example, IBM Watson constrains the user to a set of sug-
gested natural language question templates (suggesting those
that approximately match the input question). Microsoft’s so-
lution avoids ambiguity by providing real-time autocomplete
suggestions that steer the end-user to a formulation that is
clear to the system. DataTone does not attempt to constrain
the user’s language. Rather, it internally preserves multiple
potential interpretations of a query and supports interactive
ambiguity resolution through a combination of algorithms,
direct manipulation, and natural language.
2http://www.ibm.com/analytics/watson-analytics/,
http://www.microsoft.com/en-us/powerbi/,
https://www.wolframalpha.com/



Figure 1. a) The dataset overview tells the user what data is available. b) The user can type or speak queries. c) DataTone finds three data ambiguities:
medals, hockey, and skating and offers the user ambiguity widgets to correct the system decisions. d) DataTone automatically generates a visualization
and keeps track of user corrections. e) Additional design decisions widgets are available to the left of the visualization.

Visualization specification and automatic generation
Formal specifications are a conventional approach for de-
scribing expressive visualizations [33, 29, 36] in many appli-
cations [25, 35]. These formal grammars specify the mapping
from data sources to visual presentations using declarative
languages. A robust formal specification has two main ad-
vantages: 1) it allows dynamic and incremental update of vi-
sualizations through the component parameters, and 2) it sup-
ports systematic generation of database queries. For example,
Tableau updates visual specifications according to user op-
erations, generates database queries and provides immediate
visual feedback for iterative query construction.

Research on automatic visualization generation aims to estab-
lish design principles for effective visual presentation based
on data type and user task [7, 15, 23]. Systems such as Show
Me [16] incorporate these guidelines to automatically sug-
gest appropriate visualizations. In DataTone, we develop a
formalism to represent the following parameters in a visual-
ization: chart type, scales, facets, visual styles (e.g. color),
and filters. We adapt and extend the heuristics used in Show
Me [16] for automatic visualization generation and ranking.

Mixed-initiative interfaces
Mixed-initiative interaction integrates automation and user
input to address problems that would be difficult to solve us-
ing intelligent services or direct manipulation alone. This
paradigm has been applied to domains such as handwriting
recognition [27]. In the context of visualization, Healey et.
al. [10, 22] propose a mixed-initiative approach to search for
effective visualization mappings. Users specify data proper-
ties, importance of attributes and tasks before the initiation of
a search, and interactively modify the weights of parameters

to improve the search result. Prior work focuses on visualiza-
tion design decisions while our emphasis is on ambiguity in
natural language. Schwarz et. al. [26] contribute a framework
to handle uncertainty in user inputs by assigning probabilis-
tic states to user interface elements. The probabilistic states
are maintained and updated throughout an interactive session.
We adopt a similar approach in DataTone: each interpretation
is assigned a weight, and the system adjusts the weights based
on user input through the widgets.

USER EXPERIENCE
Figure 1 shows the DataTone interface, which includes four
parts: the data overview, the query box, the visualizations,
and the disambiguation widgets. Since ambiguity is present
at many levels in natural language queries, DataTone’s user
interface is designed to make it easy to correct system in-
terpretations. Data ambiguity widgets appear at the top just
below the query text box and visualization ambiguity widgets
appear to the left of the visualization. To describe the inter-
face, let’s follow a specific user.

Olivia is analyzing a dataset of Olympic athletes. She opens
it in DataTone and quickly scans the data overview on the
left (Figure 1a) noting that the dataset is from 2000-2012, in-
cludes sport, medals won, and the age and nationality of each
athlete. Olivia is really interested in hockey and speed skat-
ing, so she types the query show me medals for hockey and
skating by country (Figure 1b). DataTone finds three data
ambiguities in Olivia’s queries. First, it is not clear if Olivia
wants to see the total number of medals or a breakdown by
gold, silver and bronze categories. Second, there are two
types of hockey sports (ice hockey and field hockey) and three
types of skating-related sports (figure skating, speed skating,
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and short-track speed skating). DataTone shows three wid-
gets corresponding to the two sources of data ambiguity (Fig-
ure 1c). Olivia clicks on Ice Hockey and Speed Skating and
uses the medals ambiguity widget to explore the differences
in standings across gold, silver, and bronze medals. She uses
the design ambiguity widgets (Figure 1e) to fine tune the look
of the visualization. She colors the chart by sport and she
groups the bars by sport. Chart templates are dynamically fil-
tered to fit the data being visualized. In this case, a bar chart
is the best representation. DataTone uses Olivia’s corrections
as constraints. In future queries, Olivia doesn’t have to dis-
ambiguate what she means by hockey and skating.

DATATONE SYSTEM
The system architecture of DataTone is illustrated in Figure 2.
The system consists of a server component and a Web-based
interface that executes in a standard Web browser. Below,
we briefly introduce the main query analysis pipeline of the
system. We primarily focus on the translation steps that trans-
form the end-user input into an instantiated visualization. In
the subsequent section (Resolving ambiguities), we cover the
ambiguity resolution pipeline (shown in gray in Figure 2).

The query analyzer transforms natural language (which is
typed or, optionally, spoken) into two intermediate formats,
a Data Specification (DSP) and a Visual Specification (VSP).
The DSP captures the data-related aspects of the input query
(e.g., the columns of the database, the filtering criteria, etc.)
and the database-facing query (e.g, SQL) that extracts the re-
quired information given the input query. The VSP is a graph-
ical grammar that maps elements of the DSP into specifica-
tions for rendering views (e.g., the chart type, retinal vari-
ables, etc.). In each translation step from natural language to
DSP/SQL and to VSP, ambiguity–whether created by the end-
user’s loose specification or the NLP system’s “confusion”–
is explicitly captured. Note that while DataTone is dataset-
independent, in the current implementation we focus on one
data table at a time (we leave more sophisticated join opera-
tions to future work).

DataTone is implented in Python and Javascript. The query
analyzer is written in Python and leverages a few NLP li-
braries, including NLTK and Stanford Parser. The final vi-
sualizations are rendered using the D3.js library.

Natural language interpretation
To convert between natural language and the final VSP, Data-
Tone performs a number of “translations,” first mapping nat-
ural language to the DSP and subsequently the DSP to a VSP.
We describe these translations below.

Tokenization and similarity mapping
When mapping from natural language to a visual specifi-
cation, the goal is to identify low-level language features
(i.e., words and phrases) that have “meaning” within the con-
text of the dataset and analysis tasks (e.g., cell values, col-
umn names, and keyphrases such as “relationship between”).
The set of possible phrases is constructed by extracting all
n-grams, ranging from 1 (single words) to k, the sentence
length. For example, the phrase “relationship between A and
B” is composed of {relationship, between, A, and, B, rela-
tionship between, between A, . . . , relationship between A and
B} (the phrase is stemmed and stop words are removed with
the exception of conjunction/disjunction phrases). Our sec-
ond goal is to identify those n-grams that have some rele-
vance to the dataset and task definition. This is done by com-
paring each of the n-grams to a set of regular expressions and
a lexicon consisting of general phrases (e.g., “compare” or
“average” or “less than”). Specifically, we tag each n-gram
with one of eight category labels.

The classifications include: 1) database attributes (i.e., col-
umn names), 2) database cell values, 3) numerical values, 4)
time expressions (matched against predefined regular expres-
sions), 5) data operators and functions (e.g., lexicon specified
terms such as greater than, less than, equal, sum, average,
sort), 6) visualization key phrases (e.g., trend, correlation,
relationship, distribution, time series, bars, stacked bars, line
graph), 7) conjunction and disjunction terms (e.g., and, or),



and 8) “direct manipulation” terms (e.g., add, color) that are
natural language analogs of direct manipulation actions.

Figure 3 provides an example annotation. The database is a
simple “census” table with data for each state by year. In our
example, the analyst is trying to understand the impact of the
last recession on the middle class in two states. N -grams that
are an exact match to a lexicon or column header (e.g., the
word “between”) or that match a regular expression pattern
for time or number (e.g., “2010” or “$50000”) are automat-
ically tagged. When there is no exact match, we perform an
approximate match based on semantic similarity.

Specifically, we calculate the pairwise similarity between
each n-gram, i, and lexicon entry, j using two simi-
larity functions, Simwordnet(ngrami, lexiconj) [37] and
Simspelling(ngrami, lexiconj) [38]. The first compares the
“distance” between the n-gram and the lexicon by calculat-
ing the graph distance on the WordNet graph [19] (nodes
in WordNet are words and edges include semantic rela-
tionships such as hypernyms or synonyms). Thus, “fam-
ily income” and “families earning” are both similar to “me-
dian household income.” The second similarity function
Simspelling allows us to handle minor spelling mistakes
by testing the “bag-of-words” similarity between the two
phrases (calculated as cosine similarity). The final simi-
larity between the n-grams and lexicon entries is defined
as: Sim(ngrami, lexiconj)=MAX{Simwordnet(. . . ),
Simspelling(. . . )}. To prevent spurious matches, we set a
minimum similarity threshold τ = 0.8, which we have qual-
itatively found to be effective. We have also found that be-
cause most column names and textual cell values correspond
to entities, testing only n-grams identified as noun phrases—
via a part-of-speech (POS) tagger—boosts performance both
in terms of efficiency and accuracy. Since we require a POS-
tagger later on in our analysis pipeline, we invoke it earlier
and filter the n-grams.

In the current implementation, we assume the names of
database elements (attribute names or text values under an
attribute) are meaningful and human-legible. As we continue
to develop DataTone, we will continue to add functions to
reduce this requirement (e.g., automatic abbreviation expan-
sion). Additionally, with the exception of database-related
terms, we manually constructed the keyword lexicon based
on pilot studies and observations of visualization captions in
publicly available reports and presentations. Our lexicon in-
cludes terms such as average, total, maximum, number for
aggregation functions; sort, rank, decreasingly, top, best for
sort operations; higher than, lower than, between for opera-
tors such as>,<,=; correlation, distribution, time trends for
inferring visualizations; stacked bars, scatter plot, line graph
for specifying chart types; and add, keep, color for graph ma-
nipulations. Future work may allow us to produce this lexicon
automatically or to enhance it with domain-specific terms.

Relation identification
Simply tagging phrases is insufficient for understanding user
input to construct suitable database queries. For exam-
ple, from the phrase “family earnings more than 50000 and
less than 100000”, we may identify the database column

name (median household income), an operator (less than
and more than), cell values (50000 and 100000), and con-
junctions (and). This set of matched terms is not sufficient
to construct a functional query where the relationships be-
tween the terms are clearly defined (e.g., SELECT ∗ FROM
DB WHERE (MEDIAN FAMILY INCOME ≥ 50000) & (ME-
DIAN FAMILY INCOME ≤ 100000)).

To build the necessary relationships, we utilize the Stanford
Core NLP Parser [18] to generate both the constituency parse
tree and the typed dependencies. We have manually con-
structed a set of patterns that transform both structures into
filters. For example, for a dataset of individual sales of items
across many states, we might say: show me the states that had
total sales greater than than 20000. The constituency parse
tree shows that total sales is a NP (noun phrase), greater
than 20000 is an ADJP (adjective phrase), and that NP and
ADJP are siblings of an S (”sentence”)—so we apply SUM
to Sales, the operator “>” to 20000, and generate a filter
SUM(Sales) > 20000.

In more complex cases, a simple parse will not identify all the
relationships as many of the related phrases are not adjacent.
In this case, a dependency parser can find more complex rela-
tionships. For example, if our input phrase was show me the
states that had total sales greater than than 20000 and less
than 100000, our parse would tell us that both “greater than”
and “less than” are connected to total sales.

We use a dependency parser [18] to find: relations between
data operators and values (which forms a condition), attribute
and conditions (which forms a filter), and aggregation phrases
and attribute (which forms an aggregation function). We use a
combination of features including: dependency distance and
type, token distance in sentence, and whether the phrase is in
the same chunk in constituent parse tree.
Data specification (DSP)
Given our initial parse and tagging, we have enough informa-
tion to generate one or more data specifications (DSPs). DSPs
contains: Attributes, Values, Filters, Aggregates, Order, Mea-
sure Attributes, and Dimension Attributes.

Attributes—All attributes (column names) that are identified
in the original sentence are retained. For example, if we re-
fer back to our sample sentence in Figure 3, “unemployment”
may refer to either unemployment rate (a percent) or unem-
ployment count (a total number). Similarly “family income”
may refer to either median household income or mean annual
wage. Abstractly, this means that we have four DSPs cor-
responding to each unique pairing of {unemployment rate,
unemployment count} and {median household income, mean
annual wage}.
Values—Values include all strings, numbers, times, etc. that
are identified in the text. These may include strings explicitly
present in database cells (e.g., California) but can also include
those matched by a regular expression (e.g., 2010).

Filters—Filters are determined from the constituency and de-
pendency parse described above. They are essentially SQL-
like fragments that enforce equality as well as numerical
and temporal ranges. In the case of ambiguous matches, a
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filter is generated for each. For example, because “fami-
lies earning” may match to both median household income
and mean annual wage, we construct an ambiguous filter:
FILTER(20000 ≤ {median household income, mean annual
wage} ≤ 150000). Note that this is equivalent to two sepa-
rate filters, one for each match. In our example above, other
filters include: FILTER(state = California or Michigan) and
FILTER(2007 ≤ year ≤ 150000).

Order—Order operations are functions extracted from the
input string that explicitly convey a desired order on the
data. An example input sentence might be: “show me the
sorted medal count by country from largest to smallest” in an
Olympics dataset. This would yield: orderBy(MedalCount,
DESC). When ambiguous, both ascending and descending
are retained as options.

Aggregates—Like order operations, aggregations reflect
“pre-processing” operations to perform on the database. For
example, sums, averages, maximum values, and counts can
all be computed. Thus, “Show me average medal count by
country per year” might yield: AVG(MedalCount).

In addition to the above categories we adopt the concepts of
dimensions and measures from the database literature to fur-
ther differentiate between data attributes. Dimensions are in-
dependent variables and represent ways of partitioning the
data. These are often categorical in nature (e.g., states) but
can also be numerical attributes that have been transformed.
Measures are the dependent variables. Though measures are
most often numerical in nature, a categorical variable (e.g.,
state) can be transformed to a numerical measure by aggre-
gation (e.g., COUNT(state)).

All attributes that are explicitly referenced in the text (e.g.,
unemployment rate, unemployment count, median household
income, mean annual wage) or implicitly derived (e.g., year
and state) are possible dimensions and measures. For exam-
ple, in the statement “show me unemployment rate by state”
we may have (1) measure: unemployment rate, dimension:
state, or (2) measure: COUNT(state), dimension: unemploy-
ment rate. Statement (1) would generate a bar chart with a

bar for each state (the bar height indicating the unemploy-
ment rate). The second statement would generate a bar chart
with a bar for every unique unemployment rate value (e.g.,
3.3%, 5.0%) and a bar height reflecting the number of states
with that rate.

In our recession example (Figure 3), one allocation might
be to assign both unemployment rate and median household
income as dimensions (with no measures). An alternative
would be to assign unemployment number and median house-
hold income to measures and year to dimensions. A third
DSP would replace year with state and so on. The many con-
figurations that are nonsensical–generating empty results or
single data marks in the visualization–are eliminated. The re-
maining DSPs reflect different possible configurations given
the input text and capture a portion of the ambiguity space.

Database query generation
For each DSP created by DataTone, we generate one database
query (e.g., SQL). We represent the queries using the follow-
ing abstract template:

SELECT {Aggregates}, {Dimension Attributes} FROM Ta-
ble WHERE {Implicit Filters} GROUP BY {Dimension At-
tributes} HAVING {Explicit Filters} ORDER BY {Order}
These are directly created from the DSP with the exception of
filters. Explicit filters, those filtering dimension attributes or
aggregates, are placed with HAVING. Implicit filters, those
that are referring to attributes not explicitly specified, are
placed in the WHERE clause.

We use OR to combine dimension filters for the same at-
tribute. For example, given the statement “show me profit
in California and Nevada”, the filter is FILTER(state = Cal-
ifornia or Nevada), which would yield the SQL: WHERE
STATE=’CALIFORNIA’ OR STATE=’NEVADA’. We use
AND to combine dimension filters for different attribute (as
well as to combine filters on aggregates). For example:
“show me profit in California and Nevada for books and fur-
niture,” would yield WHERE (STATE=’CALIFORNIA’ OR



STATE=’NEVADA’) AND (CATEGORY=’BOOKS’ OR CAT-
EGORY=’FURNITURE’).

Visualization generation
Each SQL query is executed against our database. The re-
sulting “view” coupled with the originating DSP allows us
to generate a visual specification (VSP) for each DSP. If the
SQL does not generate a result, or there are too few data
points, the DSP is removed from consideration.

DataTone currently supports a limited number of visualiza-
tion types (scatter plots, various bar and line chart formats).
Each of these is represented by a different VSP “template”
that accepts different configurations (e.g., the configuration
for a bar chart is different than that of a scatter plot). The
VSP is transferred to the client where it is rendered by the
D3.js library [5]. Additional interactive features in the inter-
face allow the end-user to brush over marks (e.g., bars) to get
additional details and to select them for subsequent queries.
We briefly describe the configuration of the VSPs below.

Visual specification (VSP)
Visual specifications (VSPs) in DataTone build on the gram-
mar of graphics [36]. A VSP consists of specifications on
the graphic type, x− and y− axes, encoding, and faceting.
The system supports seven graphic types: grouped bar chart,
stacked bar chart, single-line chart, multi-line chart, scatter
plots, scatter-plot matrix, and histogram. Each template has
constraints on how parameters can be filled.

VSP templates indicate the supported data roles and data
types for each parameter. In our system, data role refers to
measure or dimension, and types are categorical, quantitative,
or time. The following are three VSP templates for grouped
bar charts, scatterplots, and histograms:

VisType: Grouped bar chart; x-axis: one categorical dimen-
sion; y-axis: one quantitative measure; x-facet: one or more
categorical dimension (optional); y-facet: one or more quan-
titative measures (optional); color: a color encoding (map-
ping) of one dimension (optional)

VisType: Scatterplot; x-axis: one quantitative dimension; y-
axis: a second quantitative dimension; facet: one or more
categorical dimensions (optional); color: a color encoding
(mapping) of the dimension (optional)

VisType: Histogram; x-axis: one quantitative dimension; y-
axis: (automatic); facet: one or more quantitative dimen-
sions (optional)

The first template, which works both for grouped bar charts
and simple bar charts with no grouping, specifies which DSP
variables can be mapped into the template. The template in-
dicates that x-axis should be a dimension (i.e., a category),
and y-axis should be a measure (i.e., a numerical height for
the bar). The optional facet parameters allow us to further
break apart the bar chart. For example, multiple dimensions
on the x axis could result in grouping first by one dimension
(e.g., state) and then by another (e.g., year). Multiple facet
parameters on the y could indicate vertical concatenation of
bars. The color parameter could be any dimension used for
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the x-axis or x-facet. Note, that the VSP simply maps the
DSP into visual parameters. It does not transform the data.

As we describe below, DataTone attempts to map each DSP to
the VSP template that can accept that specific DSP’s config-
uration (based on the measures, dimensions, and their types).
This means that there may be many possible VSPs that are
“reasonable” for a given DSP. Each reflects an alternative rep-
resentation given the underlying ambiguity. Our goal is to en-
sure that DataTone (a) ranks VSPs from most to least likely,
and (b) allows the end-user to easily resolve the ambiguity
through simple widget interactions.

RESOLVING AMBIGUITIES
The different pipeline elements in DataTone produce different
types of ambiguity which may result in many different visual
instantiations for one query. In presenting visual results to the
user, one option is to simply present all the visual possibilities
for the query. However, ambiguities are multiplicative. For
example, three ambiguous database attributes in the original
input text, each having two possible column matches, would
result in eight or more DSPs. Each of these DSPs can then
be mapped to multiple VSPs. To deal with this “blow-up”
of possibilities, DataTone ranks the VSPs and provides the
end-user with a mechanism to quickly switch views.

Because different types of ambiguity require different treat-
ment for both ranking and GUI presentation, we must con-
sider the types of ambiguities and their impact. Figure 4 re-
flects ambiguity “flow” through the DataTone system. Each
“decision node,” labeled with a “source” caption, is a deci-
sion point in the system where ambiguity can be generated
and resolved. The model captures both (1) how ambiguity ac-
cumulates and influences downstream decisions and (2) how
an upstream decision by the system or the end-user propa-
gates backwards to eliminate points of ambiguity. For exam-
ple, if the end-user specifies a particular visualization type
that they would like (e.g., a histogram), all past decisions
can be updated to eliminate those that are incompatible with
that choice. Notably many of the decision points are influ-
enced by the initial “query” which ultimately signals the end-
user’s request. We describe six points of ambiguity. For each,
we describe the specific implementation choices we used to
resolve–as much as possible–the ambiguity before it is pre-
sented to the end-user.

Data ambiguities
Many of the data ambiguities we encounter have to do with
the interpretation of natural language. Not only are we lim-
ited by the computational linguistics approaches we use (e.g.,



multiple parses of the same sentence), we must also contend
with the ambiguity created by the end-user’s phrasing of their
request. In this latter case, not even a perfect NLP system
would be able to completely infer the end-user’s intent.

Linguistic ambiguity can occur at lexical and syntactic lev-
els [17]. Roughly, lexical ambiguity arises due to multi-
ple word meanings. Syntactic ambiguity results in multi-
ple possible structures (i.e., different ways of parsing a sen-
tence). The generation of multiple possible interpretations of
the query leads to multiple sources of ambiguity.

Source 1: Recognition of database attributes and text values
End-users often refer to entities and attributes in vague ways.
For example, a user may ask for product when product name,
product category, and product sub-category exist as attributes
in the database. Alternatively, when requesting “Springfield’s
population over time” it is not clear to which of the 30+
Springfields in the US the end-user is referring.

DataTone approach—While we do not completely resolve
this kind of of ambiguity, we are able to rank different map-
pings. As we described in the system section, DataTone cal-
culates a similarity value between the identified phrase and
attributes and values. This similarity value is retained and
used to rank the different options.

Source 2: Recognition of filters, sorting, and aggregates
Due to multiple parses of the same sentence, DataTone may
see different structural forms of the same query. For example,
the query “population in Michigan and California in 2012”
may be parsed as a request for Michigan’s population today
and California’s in 2012 (instead of the more likely 2012 pop-
ulation for both states). In other situations the filter, sort or
aggregation may be under-specified. For example, when sort
is used (on its own), it is not apparent if the end-user wants an
ascending or descending sort order (note that we do recognize
phrases such as sort up). Similarly, it is not clear if amount
refers to the sum or count of something.

DataTone approach—One of the benefits of explicit filters
is that we can use them to resolve Source 1 errors. For ex-
ample, if the end user specifies “unemployment under 5%”,
we know that only unemployment rate is a viable match (un-
employment numbers are not represented as percentages or in
the same scale). Similarly, if the end-user specifies any other
criteria that is unambiguous, we use this to rerank the am-
biguous criteria. For example, if our end-user indicates that
in addition to Springfield, they also want the population of
Neeses, a town name unique to South Carolina, the Spring-
field in South Carolina is “boosted” in the ranking.

Source 3: Dimension and measure selection
When users specify a filter, it is not clear whether or not to
treat the attribute of a filter as a dimension attribute. Our sys-
tem explicitly encodes dimension attributes in the graphic. If
we don’t treat the filter attribute as a dimension attribute, we
only implicitly filter the data using this filter. For example,
take the query: “Show me sales in California and Nevada af-
ter 2012”. We may select State as a dimension with Year as
an implicit filter (e.g., yielding a two-bar bar chart with total

sales after 2012). Alternatively, we could treat Year as a di-
mension and State as an implicit filter (with SUM(sales) as the
measure). This would result in a single time series for sales in
Nevada and California together for every year after 2012. Fi-
nally, we could treat both State and Time as dimensions. The
visualization here would be a multi-series line chart (time se-
ries) with a line each for California and Nevada.

DataTone approach—Though we may not be able to com-
pletely eliminate this ambiguity, we can nonetheless rank
our options heuristically. As numerical attributes are usually
measures and categorical attributes are dimensions, we can
prefer those interpretations that are consistent with this struc-
ture. However, we have found that this does not always work
in cases where the categorical variable consists of too many
unique cases. For example, in a database that contains thou-
sands of product names, it is unlikely that the end-user wants
to treat product names as a dimension. DataTone calculates
the distinct unique values divided by the number of rows. If
the number is high (i.e., high entropy), we treat the column as
a measure (we have found 0.7 is a good threshold).

Ambiguities in design decisions
Source 4: Choosing visualization templates
Given a DSP, there are many possible templates. Previous re-
search on automatic visual presentation has focused on task-
driven approaches and data-driven approaches [15, 24, 6,
16, 30, 23]. Task-driven approaches rely on inferring the
type of tasks from users’ actions (e.g., a comparison task, a
relationship-finding task, etc.) and then selecting the visual-
ization type based on this inference. Data-driven approaches
analyze the data features to find the best visual presentations
independent of the task.

DataTone approach—DataTone makes direct use of directed
commands or task definitions. This is done through the use
of the lexicon. Our lexicon contains words related to four
task types: comparison, correlation, distribution analysis and
trends. Each of the task types is preferentially associated with
a VSP template so the presence of specific keywords will rank
those VSPs higher.

In most situations, the “best” visualization must be inferred.
All VSP templates (see the System description) describe the
input types (in terms of dimensions and measures) for which
they are suited. Templates can match imperfectly. For exam-
ple, for the query “unemployment rate versus poverty rate”
histograms and scatterplots are both viable. However, be-
cause we have two quantitative variables that can be directly
mapped to the scatterplot template, this is preferred over the
histogram which requires binning and transformation.

Source 5: Faceting data for small multiples
Small-multiple displays of information make it easier for peo-
ple to compare data and find patterns across multiple dimen-
sions [34, 29]. Given a query that mentions multiple data at-
tributes, the ambiguity comes from the decision of which at-
tributes to use as facet parameters for the small multiples, and
how to organize them. For example, for the query “show me
sales by region by product categories”, a grouped-bar chart
can be grouped by region or by product category.



DataTone approach—For the default ranking of VSPs, we
prioritize the grouping order that is consistent with the order
in which attributes are mentioned in the query. We have quali-
tatively observed that most end-users describe their request in
a top-down approach (e.g., the region-based grouping being
primary in the example above).

Source 6: Choosing encoding methods
Color, shape, and size are common variables in a visualiza-
tion. In the current prototype DataTone only supports color
encoding. However, there may still be ambiguity in whether
or not to use color. Though color may not be called for ex-
plicitly, or may result in double-encoding, it may nonetheless
be desirable.

DataTone approach—If the end-user specifies encoding pa-
rameters (e.g., color by region), visual forms that match the
specification are preferred. Otherwise, we apply a general
heuristic that visualizations that require too many colors are
less preferable. As we continue to add new encoding types,
simple heuristics may not work or may result in conflicts.
However, solutions such as those described in APT [15] may
be beneficial for ranking based on expressiveness and effu-
siveness criteria.

Ambiguity widgets
Though DataTone is able to implicitly resolve many ambigu-
ities and rank ambiguous VSPs with high precision (i.e., our
top suggestion is often the correct one), there are nonetheless
instances where the end-user must intervene to resolve mis-
takes and navigate the ambiguity space explicitly. Though it
is possible to extract all points of ambiguity from the collec-
tion of VSPs, instantiating all the possible VSPs is time con-
suming. Instead, DataTone retains ambiguity more directly
by simply storing decision points.

DataTone manifests decision points in the UI through vari-
ous selection widgets (e.g., drop-downs, lists, etc.) that are
generated dynamically and “just-in-time.” For example, in
Figure 1(c) we see selection lists underneath the end-user’s
query. These reflect a lexical ambiguity that can be resolved
by selecting from the list of possible choices. To the left of
Figure 1(e), additional selection widgets allow the end-user to
resolve other ambiguities: options for dimension ambiguity
show what the explicit dimensions are; the options for chart
types are represented as thumbnails of charts with a short de-
scription when the mouse hovers; the options for color are
interpreted as Color by X; and the options for facet are inter-
preted as Group by X then by Y.

When a selection is made by the end-user (e.g., picking a
visualization type), ambiguities that are no longer possible
given the selection are eliminated from the interface. Because
of the underlying architecture, the same ambiguity can be rep-
resented using multiple widgets. We are continuing to ex-
plore different approaches to manifest these widgets to make
our end-users more efficient and to reduce disruption to their
work. As with most mixed-initiative solutions, our goal is to
minimize the cost to the end-user of asking for guidance or
confirmation through the interface.

Past preferences and sessions
By overriding DataTone’s suggestions or even accepting the
default recommendations, the end-user is signaling their pref-
erences. While preferences may change over time, there is
likely a significant consistency within a session. For exam-
ple, if the end-user selects Unemployment Rate in the widget
when querying for unemployment, they likely want DataTone
to remember this preference for future queries.

DataTone preserves all explicit actions (direct-manipulation
driven changes) as well as weaker implicit actions (we view
not changing a decision as implicit agreement with Data-
Tone). A stack of these actions is retained and used for
ranking. Specifically, let n denote that the ambiguity oc-
curs n times in the past. An action’s ‘score’ is calculated
as: Score(action) = DefaultScore(action) +

∑n
i=1M ∗

Recencyi(action), where Recency indicates the normalized
position of the query in the stack, and the recent query has the
larger Recency value. M is a constant (we use 0.5) for bal-
ancing the default ranking and ranking-by-past-preference.
DataTone finds past actions that may resolve a particular am-
biguity (e.g, how often was rate picked over number and how
recently?) and reranks using the returned score.

In addition to the long-term retention of preferences, Data-
Tone also offers a short-term session facility to support ex-
ploration. The end-user may type in a “follow up” query. For
example, their initial query may be “show sales by region”
with a follow-up that simply says “sort”. When a query does
not appear to have all the features necessary to generate a
DSP, DataTone tests to see if the query “makes sense” as an
extension to the previous query. If so, it is treated as a fol-
low up query. DataTone also allows the end-user to select
elements in the visualization and ask additional queries. For
example, a user has created a bar chart showing the profit in
different regions. He finds one region has negative profit and
wants to know more about that region. He can just click the
bar of the region of interest and ask “by category by year.” A
new chart will be generated showing the yearly profit only for
this region by category and year.

EVALUATION
To evaluate DataTone we carried out a comparative user
study. We struggled to find the right comparison software
considering Microsoft’s Power BI tools, IBM’s Watson An-
alytics, and Articulate [30]. Since Articulate was not easily
available and Power BI did not support editing the visualiza-
tion after it was generated, we chose to compare to Watson.
Similar to DataTone, Watson allows users to construct visu-
alizations through a combination of natural language interac-
tion and direct manipulation. The main difference between
the two systems is in how they approach ambiguity. Data-
Tone constructs a visualization directly from the user query.
In contrast, Watson responds to user queries with its own list
of suggested questions (those that it knows how to answer
through visualization). Watson then lets the user adjust the
generated visualization through direct manipulation. Admit-
tedly, directly comparing these two interfaces is difficult. The
systems look completely different and Watson is much more
polished. However, we felt that this comparison is interesting



as the systems are situated at different points in the design
space in terms of how they deal with ambiguity in natural lan-
guage. Our evaluation holistically compares the two systems
rather than analyzing each interface component individually.

Methodology: jeopardy evaluation
To make our study most similar to real-world data analysis
where users are looking for answers with specific hypothe-
ses or questions in mind, we wanted to design a study that
incorporates data exploration tasks that were directed by a
specific goal. The challenge, however, was to offer the task
goals in an appropriate format without priming the users with
textual study instructions. In piloting the study we found that
when given specific tasks (e.g., “plot unemployment in CA
over time.“), the subjects would simply parrot the task words
rather than come up with their own phrasing. More often
than not users would generate the right visualization with one
query. Even when we tried terminology that did not map to
any particular column or data cell, the system often provided
the right answer. Thus we did not see any diversity in user
phrasing, thereby resulting in little use of the disambiguation
widgets or stress testing of the algorithms.

To address this challenge around priming participants, we
propose a novel evaluation protocol that we call Jeopardy
Evaluation 3. Instead of describing the visualization task, we
describe a fact that would be represented (i.e., expressed) in
the visualization (i.e., the visualization can prove or possi-
bly disprove the fact). For example, we may say that “North
Dakota has the fewest number of people without jobs” (true
for our dataset). The subject is then tasked with generating
a visualization that demonstrates this fact. This can be ex-
pressed in the form of a question, but a statement such as
“Show me a sorted view of unemployment by state” works
equally well. We select facts so that simply parroting the text
will not generate the right view. This challenges the subject
to first identify the visualization they think would act as evi-
dence and then asking the visualization system to generate it
by mapping it into a natural language description.

The specific protocol we apply is to show facts, one at a time,
and to allow the subject to use DataTone or Watson until they
believe they have arrived at a satisfactory answer. We are able
to analyze the specific operations the subject takes in the in-
terface as well as their ability to generate a visualization that
expresses the fact. Because there are often multiple visual-
izations that are correct, we can also determine if a particular
solution is effective relative to other solutions.

Datasets We utilized three datasets: 1) a basic “census”
dataset which contains 12 columns including population, me-
dian age, and wages values (in 10 year increments from 1900
to 2010), family income statistics (2005-2007), and votes for
Obama and Romney as well as unemployment (2010); 2) a
sales dataset for a chain of Canadian stores selling office sup-
plies that includes order date, priority, product category, prod-
uct sub-category, customer segment, etc.; and 3) a dataset

3We were inspired by the TV game show Jeopardy!, where the con-
testants are shown answers and must phrase their responses in the
form of a question.

from the Olympics (2000-2012) that includes all athletes that
won medals, their nationality, sport, and type of medal won.
Please see the supplemental materials for the datasets and all
the facts we used in the study.

Protocol
The study had five phases, each lasting 10 minutes: learning
software A, testing software A, learning software B, testing
software B, and an exploratory task with DataTone. Ques-
tionnaires were interleaved within the experiment to collect
feedback on each system immediately after each was tested.
Additionally, pre- and post-study surveys were presented to
subjects. During the learning phases, the subjects watched a
six-minute video introducing them to the interface and walk-
ing them through two facts (one video was generated for Wat-
son and one for DataTone). The facts were listed in a Power-
Point document, and the subjects were asked to take a screen-
shot of the DataTone/Watson Analytics UI and paste the visu-
alization confirming the fact in each PowerPoint slide. After
the video tutorial, each subject completed one or two facts
and was allowed to ask questions of the moderator. In the
testing phase, the subjects were told to get through as many
facts as possible in 10 minutes. There were a total of 10 facts
available. All training was done with the census dataset. Test
phases utilized the Olympics and sales datasets. The orders
of the software and datasets were counterbalanced following
a Latin-square study design.

To test if users would act differently when asked to find their
own facts (rather than those defined by us), we created an
exploratory task using DataTone. We gave subjects DataTone
and the sales dataset with the following instructions: In the
last part of this study you will be looking for your own facts.
Imagine that you are a sales person in the Alberta province
of Canada. Your goal is to convince your boss to give you
more money for ads in your region. Come up with a good
argument for why he should give you more money and create
a few slides to share with your boss.

Participants We recruited 16 participants, ages 18 to 33, 11
men and five women. The study lasted one hour and each par-
ticipant was given a $20 gift card to Amazon. When asked to
rate their data analyst expertise, eight rated themselves begin-
ners, six rated themselves as intermediate users and two rated
themselves as experts. All participants reported some experi-
ence with data analysis but this ranged from only using Excel
to more sophisticated tools and languages such as Python, R,
SPSS, SQL, Tableau, and Matlab. The subjects had a variety
of occupations including students, engineers, data scientists,
and product managers.

Results
Overall, subjects performed much better with DataTone than
with Watson. Subjects attempted significantly more facts
with DataTone (5.56) than with Watson (2.38, p<0.01). Sub-
jects correctly completed more facts with DataTone (5.43)
than with Watson (2.00, p<0.01). There was no significant
difference in number of queries per fact between the tools,
and we found no interaction effects between the two indepen-
dent variables, system and dataset. Data ambiguity widgets
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Figure 5. Survey responses

were used on average six times, while visualization ambigu-
ity widgets were used on average seven times. Only one user
did not use any widgets.

In the closing questionnaire (see Figure 5), 14 of the 16 sub-
jects said they preferred DataTone to Watson. Those who
preferred DataTone said that it was easier to use and seemed
more flexible. S12: It seemed much easier to figure out how
to get the visualizations I wanted. It was also much easier to
figure out how to fix errors. There were many positive com-
ments about the interface for resolving ambiguity. S14: Very
natural interface, and I wasn’t worried about being syntac-
tically accurate since it was easy to correct mistakes. The
subjects liked the polish of the Watson interface and reported
that it was a more robust (S5), professional (S7), and powerful
(S4). When asked how they would improve DataTone, sub-
jects suggested polishing the interface (S13), adding an intel-
ligent auto-complete to guide queries (S16), and supporting
mathematical operations through natural language (S14).

User behavior in the exploratory part of the study was very
similar to the fact-based evaluation. The participants gener-
ated one to three visualizations showing sales and profit data
across the different regions highlighting Alberta as a high-
performing region.

DISCUSSION AND FUTURE WORK
Our current approach has a number of limitations. First, our
algorithmic resolution of ambiguity uses a set of heuristics
that have been experimentally tuned. A more general prob-
abilistic framework for working with ambiguity (e.g., [26])
may handle a wider range of ambiguities and corrections over
time and across users. In our current prototype we built our
model of ambiguity by analyzing each stage of the pipeline
and focusing less on external sources of ambiguity. In future
work, we will research additional sources of ambiguity from
the perspectives of a broader set of use-cases.

Additionally, we don’t model the user’s interaction context.
Although the end-user can filter data through direct manipula-
tion by selecting bars or lines, those filters are not maintained
beyond the subsequent query. One solution is to use a faceted
search interface to surface filters. However, filters would add
more complexity to the interface and the user would have to
manually clear filters they no longer want to use.

Currently we only support single-table datasets. Some ex-
tensions to more complex datasets are relatively straightfor-
ward. If the multi-table schema is clean with linked foreign
keys, one could automatically construct a single-table “view”

of the database. Other extensions, such as aligning schemas
of unlinked tables, are more complex. The latter case will
likely introduce new sources of ambiguity and require addi-
tional design work.

Ambiguity widgets in DataTone are largely of a single type
(list) and only appear in two places—below the search bar and
to the left of the visualization. But there are many other op-
portunities. For example, the axis labels or chart legend could
be leveraged for disambiguating. Alternatively, we could em-
bed widgets in the search box and allow the user to disam-
biguate in real time as they type (similarly to autocomplete
in current search engines). However, it is worth noting that
our subjects did not struggle with discoverability, which often
motivates the inclusion of autocomplete features. The data
overview may counteract some of the inherent limitations of
natural language interfaces in this particular domain.

Finally, though DataTone offers speech input, we did not
evaluate this explicitly (and we did not encourage subjects
to use it nor describe it in the training video). Clearly speech-
to-text creates an additional layer of ambiguity that needs to
be modeled in the pipeline. We hope to expand DataTone to
support a broader range of multi-modal inputs in the future.

CONCLUSIONS
We present interaction techniques for managing ambiguity in
natural language interfaces for data visualization. A compar-
ative study of DataTone, our mixed-initiative system, shows
that it outperforms state-of-the-art commercial products on a
number of dimensions. As natural language interfaces be-
come more common across a variety of applications, we need
to consider appropriate interface and interaction strategies for
dealing with the inherent ambiguity of human language.
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