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ABSTRACT

Many of the modern data sets such as text and image data can be represented in high-dimensional vector
spaces and have benefited from computational methods that utilize advanced computational methods. Visual
analytics approaches have contributed greatly to data understanding and analysis due to their capability of
leveraging humans’ ability for quick visual perception. However, visual analytics targeting large-scale data such
as text and image data has been challenging due to the limited screen space in terms of both the numbers
of data points and features to represent. Among various computational methods supporting visual analytics,
dimension reduction and clustering have played essential roles by reducing these numbers in an intelligent way
to visually manageable sizes. Given numerous dimension reduction and clustering methods available, however,
the decision on the choice of algorithms and their parameters becomes difficult. In this paper, we present an
interactive visual testbed system for dimension reduction and clustering in a large-scale high-dimensional data
analysis. The testbed system enables users to apply various dimension reduction and clustering methods with
different settings, visually compare the results from different algorithmic methods to obtain rich knowledge for
the data and tasks at hand, and eventually choose the most appropriate path for a collection of algorithms and
parameters. Using various data sets such as documents, images, and others that are already encoded in vectors,
we demonstrate how the testbed system can support these tasks.
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1. INTRODUCTION

The volume of available data has been increasing at an exponential speed in recent years. Many of the modern
data are generated in various forms such as documents and images of which the raw data can be represented
in a high-dimensional vector space, allowing various computational methods to be applied. For instance, text
documents can be encoded using a bag-of-words model, and images are represented using their feature point
descriptors,1 resulting in hundreds of thousands of dimensions.

Given high-dimensional data, understanding and analyzing them become more challenging. Visual analyt-
ics2,3 has gained increasing interest due to its capability of leveraging humans’ ability of quick visual insight in
data analyses and decision processes. However, many state-of-the-art visual analytics techniques or systems are
not equipped for high-dimensional large-scale data. One of the reasons is that although humans are good at
visually grasping an overall structure, when the number of visualized objects becomes large, it is often difficult
to extract meaningful information from visualization. Another factor is the limited dimension of a screen space
where high-dimensional data have to be visualized. For instance, parallel coordinates, a widely-used visualization
technique for multi-dimensional data, do not scale well even when the dimension reaches several tens.

To improve this scalability issue, computational methods can support visual analytics by transforming the
original data into a more compact and meaningful representation. Among various methods, two main ones,
dimension reduction and clustering, play an essential role in visual analytics of large-scale high-dimensional data
owing to their nature to reduce the numbers of features and data items into manageable sizes, respectively.
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Dimension reduction methods can reveal meaningful information by allowing the visual representation of high-
dimensional data in a much lower-dimensional space. In addition, it allows visualization of high-dimensional
data in the form of a 2D/3D scatter plot in which one can obtain insight about data relationships with respect
to the geometric locations of data. On the other hand, clustering provides an overview of large-scale data in
terms of a small number of groups based on their semantic coherences. Such cluster information can then guide
us to a proper data group of interest on which we can further focus our analysis.

Given a wide variety of computational methods including dimension reduction and clustering methods, how-
ever, it is not easy to determine which method to choose and how to use it properly for a certain data set and
a certain task. Sometimes, when a specific method is used for a certain data set, its performance may be de-
pendent on how the data is pre-processed beforehand. In addition, many modern computational methods often
require decisions on multiple parameters. Yet there is no theoretical guideline for an optimal set of parameters
for a given problem, and we have to go through multiple trials only to obtain some initial understanding of
parameter values. As the algorithm gets more complicated, it becomes more difficult for users to understand
what these parameters mean and how to select them properly. Consequently, many visual analytics systems
choose a certain computational method, which is often basic and/or generic, and treat it as a black box with
fixed parameter values while focusing on the subsequent analysis after obtaining the output from it. However,
without an appropriate choice of algorithms and their parameters, the performance of these methods may not
be satisfactory enough to start an analysis with.

Due to these difficulties, the current state of the art in visual analytics has not taken full advantage of the
recent advancements of computational methods. To tackle this problem, we claim that users have to be provided
with the capability of interactively trying out various computational methods and their parameters and reviewing
their results at a visual level without having to know the details of algorithms. As a cornerstone to achieve this
claim, this paper presents an interactive visual testbed system for dimension reduction and clustering, the two
essential computational methods for the visual analytics of large-scale high-dimensional data.

The main contributions of the proposed testbed system are as follows. First of all, given various types of input
data such as text documents, images, and vector-encoded data, the testbed system provides extensive capabilities
to interactively select data pre-processing options and choose a wide variety of clustering and dimension reduction
methods along with their parameters. The output of these processes are then visualized in several forms, e.g.,
parallel coordinates and a scatter plot, equipped with various interaction capabilities, e.g., accessing the original
data items and brushing and linking between multiple views. Additionally, the testbed system facilitates easy
comparisons between different dimension reduction and clustering results by computationally aligning them.
Finally, the testbed system is implemented in a highly modular way so that new data types and dimension
reduction/clustering methods can be easily integrated to the current system.

Note that even though the testbed system can be used by anyone who wants to apply various methods to
their own data, some background knowledge about machine learning and data mining would be of great help
in fully utilizing the testbed system via understanding the data and the applied methods simultaneously. For
example, machine learning researchers/developers, who wish to easily plug in and visually evaluate their own
methods in practical data analysis scenarios, would be able to receive significant benefit from the testbed system.

The rest of this paper is organized as follows. In Section 2, we review the relevant literature in terms of
dimension reduction and clustering methods as well as the visual analytics systems adopting them. Section 3
describes the details of the testbed system as well as several main computational methods used in the system.
Section 4 shows various usage scenarios of the testbed system, and finally Section 5 presents conclusions along
with future work.

2. RELATED WORK

In this Section, various dimension reduction and clustering methods applicable to visualization are first reviewed.
Afterwards, we discuss some of the currently available visual analytics systems that adopt these computational
methods.



Figure 1: 2D Scatter plots obtained by two dimension reduction methods, MDS (left) and LDA (right), for a
facial image data set. A different color corresponds to a different cluster.

2.1 Dimension Reduction and Clustering for Visualization

Dimension reduction has long been one of the main research topics in data mining and statistical machine learning
areas. Numerous dimension reduction methods have been proposed, among which the most commonly used
dimension reduction methods include principal component analysis (PCA),4 multidimensional scaling (MDS),5

and linear discriminant analysis (LDA).6–8

In addition to traditional data analysis problems, they have also been widely utilized in visualization due to
their capability of representing high-dimensional data as a form of scatter plots in 2D/3D space. In a scatter
plot, each data item is represented as a point and its 2D/3D coordinate is determined from the dimension-
reduced representation. In general, the relative locations among data points reflect the pairwise relationships or
proximities among data items.

Each dimension reduction method has its own optimization criteria and behaviors, which result in different
visualizations. For instance, the recently proposed manifold learning algorithms, e.g., isometric feature mapping
(ISOMAP),9 locally linear embedding (LLE),10 and Laplacian Eigenmaps (LE),11 try to preserve the relationships
between the local neighborhood rather than global relationships. These methods have been successfully applied to
the data that originally have a low-dimensional manifold structure, and often they demonstrated their capability
to reveal such a manifold structure in 2D/3D visualizations. However, most of these methods present just several
visualization snapshots of limited data sets with no interaction abilities.

Another aspect to consider when applying dimension reduction in visualization applications is the cluster
structure of data. A majority of dimension reduction methods take into account only the pairwise relationships
between data items. In practice, however, it is not easy to obtain much insight from the 2D/3D scatter plot
generated by them for a large number of data items. The left figure in Figure 1 is a visualization example of
such a dimension reduction method, MDS, for a facial image data set. Let us, for now, ignore the colors, which
indicate the cluster labels. This visualization shows most of the data as a single chunk with a few outliers placed
outside. Although these points may give some interesting insight about why they appear to be outliers, one
cannot get much more information from this visualization.

Another type of dimension reduction methods incorporates additional information about the cluster structure
of data in addition to individual data items. Since these dimension reduction methods require the assigned cluster
label associated with each data item as an input, they are called supervised dimension reduction methods while
the previous methods are called unsupervised dimension reduction methods. Some representative supervised
methods include LDA6 and orthogonal centroid method (OCM).12 The right figure in Figure 1 is an example
of LDA visualization. This figure visualizes the data as groups of items computed by LDA based on the given
cluster labels, and one can obtain better insight about the overall data structure at the cluster level over the
individual data level.

Representing the cluster structure has been one of the main concerns in many studies on dimension reduction
and 2D/3D scatter plot visualizations even when unsupervised dimension reduction methods are used. Many
methods have been evaluated regarding their ability to visualize cluster structures, which are hidden at the time



of computing dimension reduction. For instance, a recently proposed dimension reduction method, t-distributed
stochastic neighborhood embedding (t-SNE),13 shows its capability of grouping data and revealing the true
cluster structure in 2D scatter plot visualizations.

Given the importance of the cluster structure in large-scale data visualization, clustering methods can add
a significant value to visual analytics approaches by enabling visual understanding of the overview of data.
Clustering partitions the entire data into groups or clusters so that the data items in the same cluster are more
similar to each other than to those in different clusters. The resulting grouping information is in a form of cluster
labels, which act as an additional categorical variable associated with data items. Such cluster information can
be color-coded in visualization, as shown in Figure 1, and help us understand the cluster structure in the data
clearly in visualization.

Clustering, along with dimension reduction, has also been one of the well-studied research topics in data
mining and machine learning areas. Widely-used methods include k-means clustering, spectral clustering,14 and
Gaussian mixture models. Recently, more advanced methods such as non-negative matrix factorization (NMF)15

and latent Dirichlet allocation16 have shown their successful applications in image segmentation and document
topic modeling, etc. These methods are usually evaluated using the data set whose cluster label information
is already known and by comparing between the true cluster labels with those obtained by the computational
method. However, given the data set that may not have a clear cluster structure, clustering is typically a
very challenging task, and thus it is often the case that the resulting cluster quality is unsatisfactory. From a
visual analytics perspective, unsatisfactory clustering makes it difficult to understand the coherent meaning of
each cluster and how one cluster contrasts with another. For instance, in recent applications of latent Dirichlet
allocation for document topic modeling, while several coherent topic clusters have been successfully revealed for
the document data, many other topics often seem unclear to understand.

Even with the obvious needs of computational methods such as dimension reduction and clustering in visual
analytics, various issues such as data noise and improper algorithm and parameter choices, as described in
Section 1, prevent their initial results from being practically useful enough to support the subsequent visual
analysis. Nonetheless, among data mining and machine learning communities, which supply supposedly better
computational methods, the efforts of interactively improving these initial results in real-world data analysis
seem to be overlooked.

2.2 Visual Analytic Systems using Dimension Reduction and Clustering

In information visualization and visual analytics communities, various visual analytics systems incorporating
computational methods such as dimension reduction and clustering have been proposed to deal with large-scale
high-dimensional data. In this section, several systems such as IN-SPIRE,17 Jigsaw,18 GGobi,19 iPCA,20 and
WEKA21 are discussed.

IN-SPIRE17 is one of the well-known visual analytics systems for document data in which dimension reduction
and clustering play main roles. Given a set of documents, IN-SPIRE first encodes them as high-dimensional
vectors using a bag-of-words model. Then it applies k-means clustering with a pre-defined number of clusters.
PCA is computed on cluster centroids and applied to the entire data, which gives 2D coordinates of document
data. Based on these 2D coordinates, the scatter plot called a galaxy view is shown to users with a keyword
summary for each cluster placed at the cluster centroid. Owing to the simple algorithms adopted such as PCA
and k-means, IN-SPIRE can deal with a fairly large amount of data, but it provides only a limited number of
interaction capabilities to change the algorithms and their settings.

Jigsaw18 is another well-known visual analytics system for document analysis. The main information that
Jigsaw utilizes for visualization is named entities such as person name and location and their co-occurrences
between documents. Automatic named-entity extraction is one of the key computational components in their
analysis. The named-entity extraction can be viewed as dimension reduction that reduces the number of keywords
out of the entire vocabulary. Users can modify the list of named-entities by manually adding/removing them.
Jigsaw also provides a cluster view by using the k-means algorithm and visualize the resulting clusters as groups
of documents as well as their keyword summary. Jigsaw also supports basic interactions with clustering such as
changing the number of clusters and providing seed documents.



GGobi19 is an interactive visualization system for high-dimensional data that are already encoded. It mainly
uses a 2D scatter plot, where the two dimensions are generated by grand tour.22 The difference of grand tour
from other dimension reduction methods is that it provides an interaction to explore the high-dimensional space
by continuously changing the basis vectors that data items are projected into. However, the grand tour method
is applicable only when the data dimension is not significantly high, and thus its application is limited when
dealing with hundreds or thousands of dimensions, which is often the case in many data types such as text
documents, images, and bio data.

Another system, iPCA,20 which also takes high-dimensional data as an input, utilizes PCA as the main
visualization technique. One of the main advantages of iPCA is that beyond 2D/3D scatter plots, it visualizes
the reduced-dimensional data in a higher dimension than 2D or 3D via parallel coordinates. In generally,
dimension reduction from the original high-dimensional space to 2D/3D space introduces significant information
loss. In iPCA, it follows a useful idea to reduce the data dimension to an intermediate one that can be visualized
without much clutter via parallel coordinates and then to interact with these intermediate dimensions to obtain
particular scatter plots. Another aspect of iPCA is that it visualizes the PCA basis vectors in addition to the
data items. In doing so, users can understand the role of the reduced dimensions in their visualizations, which
leads to a better understanding about the data set as well. Even with these advantages, however, iPCA cannot
handle very high-dimensional data since iPCA visualizes each of the original dimensions.

Finally, WEKA21 is mainly a library of various machine learning algorithms for high-dimensional data with
several interaction capabilities. Various algorithms can be applied to data, and their performances can be evalu-
ated based on various measures. In addition, WEKA provides simple types of visualizations such as histograms,
scatter plots, etc. Although WEKA is similar to our testbed system in that it provides flexible algorithm choices
and settings, most of its visualizations and interactions are focused on the used methods rather than data explo-
ration. For example, WEKA does not support any interactions from its visualizations such as filtering operations
and raw data access.

As discussed above, most of the current visual analytics systems do not fully utilize a wide variety of compu-
tational methods. They adopt generic traditional methods for a broad applicability to various data sets and/or
treat computational methods as a black box with little options to control them, which would hamper the inter-
active visual analysis. In this respect, the testbed system provides the unique capability of bringing a variety of
algorithms along with full control to practical visual analytics scenarios.

3. TESTBED SYSTEM

In this Section, we describe the testbed system∗ in detail. First, in Section 3.1, we introduce the modules in
the system and explain how the overall system works. Next, we describe the details of each module from both
the computational and the interactive visualization points of view in Sections 3.2 and 3.3, respectively. Finally,
in Section 3.4, we discuss implementation details of the system and how the current system can be extended to
adopt new data types and clustering/dimension reduction methods.

3.1 Basic Workflow

As shown in Figure 2, the testbed system mainly has two parts: the computational and the interactive visualiza-
tion parts. At the computational part, the testbed system is composed of 1. vector encoding, 2. pre-processing,
3. clustering, and 4. dimension reduction. At the interactive visualization part, the testbed provides the following
interactive visualization modules: 1. parallel coordinates, 2. the scatter plot, 3. the cluster label view, and 4. the
original data viewer.

The basic workflow of the testbed system is as follows. Once a data set is loaded, data items are represented
as high-dimensional vectors via a default encoding scheme. Then, users can interactively change the options
for pre-processing, clustering, and dimension reduction methods. Each specification of these three components
instantiates a particular visualization set composed of the parallel coordinates view, the scatter plot view, and
the cluster label view. To generate these views, the output of dimension reduction, i.e., reduced-dimensional

∗An introductory video can be downloaded at http://fodava.gatech.edu/files/testbed-software/testbed.mp4,
and the executable files with the used data sets are available at http://fodava.gatech.edu/fodava-testbed-software.

http://fodava.gatech.edu/files/testbed-software/testbed.mp4
http://fodava.gatech.edu/fodava-testbed-software


(a) The system overview.

(b) The general workflow. Hexagonal blocks correspond to operations/interactions, and
rectangular ones to operation inputs/outputs or visualization modules. Stacked rectangles
indicate their multiple instantiations, which are dynamically maintained by the system.

Figure 2: The overview and the workflow of the system. User interfaces for pre-processing (A), clustering (B),
dimension reduction (C), and alignment (D) are available. Lower-dimensional data from dimension reduction
are visualized as parallel coordinates (E), and the two selected dimensions are shown in the scatter plot (F).
Cluster indices/summaries (G) are shown, and the original data can be accessed (H).

representation, acts as the coordinates of data items in the parallel coordinates view, and two user-selected
dimensions of this view are visualized in the scatter plot view. In all three views, the output of clustering, i.e.,
grouping information of data items, is color-coded along with the cluster name/summary provided in the cluster
label view.

The testbed system can generate as many visualization sets as needed depending on different specifications
of dimension reduction and clustering, and users can explore a certain visualization set and compare between
different visualization sets. To facilitate an easy comparison between different visualization results, the testbed
system offers the capability of aligning the different clustering and dimension reduction outputs. In addition,
users can highlight and/or filter out certain clusters/data items and look into the details of the selected data



items in the original data viewer. Users can also apply another set of clustering and/or dimension reduction to
the selected data items to create new visualization sets.

3.2 Computational Modules

3.2.1 Vector Encoding

The testbed system can take various types of data such as text documents, images, and pre-encoded vectors in a
comma-separated-values (CSV) file format. For document and image data, the testbed system provides built-in
vector encoding modules. For instance, the testbed system supports bag-of-words encoding for document data in
a sparse matrix form with stop word removal and stemming. Image data are converted into vectors of rasterized
gray-scale pixel values. The high-dimensional vectors obtained in this stage act as initial default vectors on which
the following pre-processing is performed.

3.2.2 Pre-processing

Once the default vectors are generated, the system shows pre-processing options depending on the data type
(Figure 2A). The following options are provided in common for all data types: 1. normalization, which scales
data vectors so that their norms equal to one, and 2. centering, which translates data vectors so that their
empirical mean is zero.

In addition, for text documents, we provide options of 1. removing the terms appearing in less than a user-
specified number and 2. applying the term-frequency-inverse-document-frequency (TF-IDF) weighting scheme.
For images, available are the following options: 1. reducing image sizes to a user-specified ratio to enhance the
computational efficiency and 2. applying contrast limited adaptive histogram equalization.23

The testbed system maintains multiple instances of different pre-processed vector sets, and users can inter-
actively generate and/or choose one of them and proceed to perform its clustering and dimension reduction.

3.2.3 Clustering

Given the default or pre-processed set of high-dimensional vectors, the clustering module performs a user-
selected clustering method with specified options (Figure 2B), which assigns each data item a cluster label. The
testbed system currently provides the following clustering methods: 1. k-means, 2. agglomerative hierarchical
clustering,24 3. Gaussian mixture models, and 4. NMF. Once a specific method is selected in the system, user
interfaces to specify the number of clusters as well as method-specific parameters are dynamically shown with
their suggested default values (Figure 2B).

Additionally, when a data set has pre-given labels, the clustering method list includes an additional item
called ‘Use original labels’ so that users can explore data with respect to the pre-given labels.

3.2.4 Dimension Reduction

Given the high-dimensional vector representations of data items, the dimension reduction module reduces the
data dimension from possibly hundreds of thousands to a visually manageable size, which makes it possible to
visualize the data in forms of parallel coordinates and/or a scatter plot. The testbed system provides both
supervised and unsupervised dimension reduction methods, as discussed in Section 2.1. In cases of supervised
methods, the cluster label, which is an additional required input to run dimension reduction, is taken from the
output of the clustering module.

The currently available dimension reduction methods in the system include supervised ones such as 1. LDA,
2. OCM, 3. centroid method (CM),12 4. two-stage methods (TSTG),25 5. discriminative neighborhood metric
learning (DNML),26 and 6. kernel LDA,27 and unsupervised ones such as 7. PCA, 8. metric and nonmetric
MDS, 9. Sammon mapping,28 10. ISOMAP, 11. LLE, 12. local tangent space alignment (LTSA),29 13. maximum
variance unfolding (MVU),30 14. LE, 15. diffusion maps (DM),31 16. t-SNE, and 17. Kernel PCA.32 Similar to
the clustering module, once a specific method is selected in the system, user interfaces to specify the number
of reduced dimensions as well as method-specific parameters are dynamically shown along with their suggested
default values (Figure 2C).



3.3 Interactive Visualization Modules

3.3.1 Parallel Coordinates View

Given an output from the computational part, i.e., lower-dimensional representations of data items and their
cluster labels, the testbed system takes a natural way to visualize the lower-dimensional data in parallel coor-
dinates with a color coding based on the cluster labels (Figure 2E). In this view, the testbed system supports
zoom-in/out via mouse wheel scroll and data selection via mouse drag-and-drop.

3.3.2 Scatter Plot View

Although parallel coordinates can fully visualize an output from the computational part, this view is often
ineffective for humans to perceive the relationships between data items, and it does not scale well in terms of the
number of data items and dimensions since each line representing a single data item occupies numerous pixels in
a screen space. Due to these limitations, the testbed system visualizes data in a 2D scatter plot (Figure 2F) by
selecting two of the parallel coordinates dimensions with the same color encoding as in the parallel coordinates
view.

In the scatter plot view, users can interactively change these dimensions corresponding to horizontal and
vertical axes via combo boxes shown in the lower left part of the view. In addition, the testbed system shows
cluster centroids and ellipses, which summarize how the data within each class are distributed, and these features
can be turned on/off via check boxes shown in the upper left part of the view. Similar to the parallel coordinates
view, supported are zoom-in/out via mouse wheel scroll and data selection via mouse drag-and-drop. Once a
subset of data is selected, users can apply another clustering/dimension reduction only on the selected data
items.

3.3.3 Cluster Label View

The cluster label view (Figure 2G) shows the cluster index, color, and summary in a simple list form. Currently,
the cluster summary is provided only for the text documents type, which is the most frequent keywords in each
cluster. Upon clicking a certain cluster index or summary, the corresponding data items are highlighted with
thicker lines/points in the parallel coordinates and the scatter plot views. Unchecking the checkboxes, which are
shown in the left side of the view, hides the corresponding data items in the two views

3.3.4 Accessing Original Data

Both in the parallel coordinates and the scatter plot view, users can access the original form of data for user-
selected data items/clusters in the original data viewer. Currently, the testbed system provides three different
original data viewers depending on the data type, e.g., text documents, images, and pre-encoded vectors (Figure
2H).

In all the original data viewers, selected data items are shown as a list with their cluster colors on the
left, and users can multi-select items in the original data viewer to see the original data items. These selected
items are then highlighted with dark yellow marks in the scatter plot view (Figure 2H). For text documents,
adopting the idea in,33 we color-code a user-specified number of representative keywords per each cluster with
the corresponding cluster color, which helps in understanding why a document belongs to a certain cluster. For
pre-encoded vectors, if these vectors are associated with another type of data, these data can also be accessed
as shown in the third viewer in Figure 2H.

3.3.5 Supporting Multi-view Exploration

Once the ‘visualize’ button is clicked (Figure 2C) after specifying computational methods, i.e., pre-processing,
clustering, and dimension reduction, a new set of the parallel coordinates, the scatter plot, and the cluster label
views are instantiated. Each of these three views is created as an individual tab in its corresponding location, and
multiple views are maintained flexibly in the testbed system, as shown in Figure 2(a). For example, any view can
be popped out as an independent window and/or split horizontally/vertically in order to make it easy to compare
between different sets of views due to different computational methods. When a certain view is activated by a
mouse click, all the options of pre-processing, clustering, and dimension reduction used to generate the view are
shown in the left in Figure 2(a).



Between different views with such a flexible layout, the testbed system supports a brushing-and-linking
capability. In the current testbed system, if certain data items/custers are selected in one view, the corresponding
data items in all the other views are highlighted as well. We use different colors for highlighting depending on
whether the highlighted data items are due to the same view or a different view, which helps identifying the
source view in which the data selection was made.

3.3.6 Aligning Different Views

In addition to the above-described multi-view management and brushing-and-linking capability, the testbed
system provides a more active means to facilitate easy comparison between visualization sets composed of different
clustering and dimension reduction results. To be specific, for a user-selected pair of visualization sets, users can
align the clustering and/or dimension reduction outputs (Figure 2D), which are then reflected to visualization
sets.

To align the two different clustering results, the testbed system performs the Hungarian algorithm.34 Given
two different cluster assignments of the same data items, the Hungarian algorithm finds the best pairwise match-
ings between their cluster indices so that the number of common data items within matching cluster pairs is
maximized. Once the Hungarian algorithm finishes, the testbed system changes the cluster indices and colors of
the second visualization set according to the matching clusters of the first visualization set. As a result, users
can maintain the consistent cluster indices/colors when comparing the two given visualization sets.

On the other hand, the testbed system handles the alignment of dimension reduction results via Procrustes
analysis.35,36 Although there exist many advanced methods to align the two sets of vectors,37 we chose Procrustes
analysis due to its computational efficiency. Procrustes analysis transforms the second set of vectors via a rigid
transformation, which allows only translation, rotation, and reflection, so that their Euclidean distances to the
corresponding data vectors in the first set are minimized. Currently, instead of aligning the entire dimensions,
the testbed aligns only the two dimensions selected in the scatter plot view so that the alignment between the
two scatter plot views are maximized. These alignment functionalities help users understand how differently the
corresponding data items/clusters are placed between the two scatter plot views.

3.4 Implementation and Extensibility

The current testbed system is mainly implemented in JAVA to achieve various GUI and interaction capabilities.
In order to support flexible window management, NetBeans Rich Client Platform and IDE† are used.

Most of the internal computational methods are, however, written in MATLAB. There are several reasons of
using MATLAB codes instead of porting them to JAVA. First of all, in many cases, the source codes of advanced
computational methods are readily available in MATLAB due to its simplicity for matrix computations. In this
respect, it would be burdensome to re-implement each of these methods in a different programming language in
order to make them visual and interactive, and it will eventually become difficult to keep up with the pace of
new technologies.

Furthermore, MATLAB provides highly optimized matrix computations. For instance, MATLAB, by default,
auto-identifies the parallelizable subroutines in the code and runs full CPU cores even in a single PC. There also
exist many efficient mature core computational methods. For example, the k-means function in MATLAB
provides various options for a distance metric to be used (Euclidean, city block, cosine, and correlation), and a
seed initialization (random, uniform, pilot-clustered, and user-selected seeds). Due to these reasons, the current
testbed system interface with the computational methods via a custom JAVA library file created by MATLAB.‡

In terms of the extensibility of the testbed system, we designed it in a completely modular way so that it
can easily accept new data types and clustering/dimension reduction methods. For instance, if one wants to
use the testbed system for a speech data type, one needs to implement only the encoding module, the possible
pre-processing options specific to the speech data type, and the original data viewer that can play audio data.
Otherwise, by performing vector encoding separately and putting the encoded vectors as an input to the system,
one can easily utilize the full capability of the testbed.

†http://netbeans.org/features/platform/index.html
‡http://www.mathworks.com/products/javabuilder/



Figure 3: The 10-dimensional results of PCA for the Weizmann facial image data set. The pre-given person id
was used as a color label. The first figure is the parallel coordinates of the entire 10-dimensional representations,
and the second and the third are the scatter plots of (1, 2)- and (3, 4)-dimensions, respectively.

(a) The alignment of clustering. For the Pendigits data set, the first figure uses the original cluster labels, and the
other two uses the same cluster labels generated by k-means. In all three figures, ISOMAP is used with the same
parameter values.

(b) The alignment of dimension reduction. For the Pendigits data set, the first figure uses TSTG and the other two
use ISOMAP with the same parameter values. In all three figures, the original cluster labels are used.

Figure 4: The effects of alignment. In both (a) and (b), the first is the reference scatter plot view for alignment,
and the second is the aligned plot of the third while the third is an un-aligned one.

Adding new dimension reduction/clustering methods is also a simple process. Currently, the implementation
of each computational method is composed of two source code files. One file performs the computation by taking
an input and generating an output as a primitive two-dimensional double array type, and the other is for user
interfaces to change the method-specific options. Therefore, whether the implementation of a new method is
written in MATLAB or JAVA, as long as it deals with two-dimensional double array type as an input and an
output, it can be easily integrated into the current testbed system without having to modify the entire system.



(a) The scatter plots for the Pendigits data set generated by ISOMAP with different parameter values, k =12, 20, 30,
and 50, respectively. The cluster labels represent the digits of data items, as shown on the left. The three figures on
the right are aligned plots with respect to the first. As the parameter increases, the cluster ‘5’ (the digit ‘4’), moves
from the top left near the cluster ‘10’ (the digit ‘9’) towards the cluster ‘7’ (the digit ‘6’).

(b) The sample data for the digits ‘4’, ‘9’, and ‘6.’ Note that the vector representation of the Pendigit data set
encodes the pen trace coordinates, which start at the red color and end at the blue in these samples.

Figure 5: The effects of a parameter change in ISOMAP.

4. USAGE SCENARIOS

4.1 Data Sets

To show how the testbed system can be utilized in various visual analytics scenarios, we use three different data
sets: 1. Pendigits (pre-encoded vectors), 2. Weizmann (images), and 3. InfoVisVAST (text documents).

The Pendigits data set§ is composed of 10,992 handwritten digit data items, each of which is a 16-dimensional
vector representing pen trace coordinates.38 The data set has 10 clusters in terms of which digit each data item
corresponds to, i.e., ‘0’, ‘1’, . . ., and ‘9.’ For our experiments, 50 data items have been chosen from each cluster,
resulting in 500 items in total. The Weizmann data set¶ contains 28 persons’ facial images with various angles,
illuminations, and facial expressions. Excluding unclear images, we have chosen 52 images from each of 15
persons, resulting in 780 data items of 15 clusters. The size of each facial image is 88×128, resulting in a
11,264 dimensional vector. The InfoVisVAST data set‖ is a document corpus of paper abstracts in IEEE Infovis
(1995-2010) and VAST (2006-2010) conferences. It includes 515 documents encoded in 4,185 dimensions via a
bag-of-words encoding after stemming and stop word removal.

4.2 Parallel Coordinates: Guiding beyond Two Leading Dimensions

When using dimension reduction in high-dimensional data visualization, the leading two dimensions of a di-
mension reduction method have been usually used to generate a single scatter plot while ignoring the other
dimensions. Unlike these previous approaches, the testbed system first visualizes the reduced-dimensional data
in the parallel coordinates view, and then two of these dimensions are interactively selected for the scatter plot
view.

Although it is difficult to visually analyze data relationships in the parallel coordinates view, it can guide
users in various ways. First of all, as shown in Figure 2(a), TSTG, e.g., LDA in this case, tends to separate
different clusters in different dimensions. For instance, although the clusters ‘2’ and ‘3’ are not well separated
in the scatter plot view with (1, 2)-dimensions selected, they seem to be separated from the other clusters in
dimensions 7 and 4, respectively, based on the parallel coordinates view.

§http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
¶http://www.wisdom.weizmann.ac.il/˜vision/FaceBase
‖http://www.cc.gatech.edu/gvu/ii/jigsaw/datafiles.html



As another example, as shown in Figure 3, given the 10-dimensional results of PCA, the scatter plot view of
(1, 2)-dimensions mixes up all the clusters together. However, hinted by the parallel coordinates view showing the
peaks of the cluster ‘12’ and ‘14’ at dimensions 3 and 4, respectively, the scatter plot view of these dimensions
turns out to give a well-clustered view. Such an observation is surprising because PCA is an unsupervised
method, which does not take into account label information. This indicates that the leading two dimensions may
not give enough information for high-dimensional data in visual analytics.

4.3 Effects of Alignment: Helping Comparisons between Visualizations

Trying various methods/settings on a given data set and comparing between different visualizations is in the
heart of the testbed system, and the alignment functionality of the system supports this process. Figure 4 shows
the effects of the alignment for clustering and dimension reduction.

In Figure 4(a), which shows the former, the three scatter plot views have identical coordinates of data items.
With the different assignment of cluster labels, it is difficult to compare the cluster membership between the
first and the third plots since the clusters have no correspondences in terms of the cluster colors and indices.
After aligning the clustering, however, two different clustering results become much easier to compare between
the first and the second view. For instance, compared to the original cluster labels shown in the first view, the
original cluster ‘8’ is shown to be merged to the original cluster ‘3.’ The two subclusters of the original cluster
‘6,’ which are shown in the bottom left and the top right in the first figure, are now split into two clusters in
k-means clustering, and the former is shown to be merged to the clusters ‘4’ and ‘10.’

On the other hand, Figure 4(b) shows the example of aligning dimension reduction. In this example, the
cluster labels are unchanged for all data items in the three figures, but two different dimension reduction methods,
TSTG and ISOMAP, are used. When comparing between the first and the third figures, which show the
different coordinates generated by these two methods, it is difficult to recognize the correspondences between
data items/clusters. Between the first and the second figures, whose dimension reduction results are aligned, one
can perceive the correspondences in a much easier way. For example, the cluster ‘4’ is shown to be close to the
cluster ‘8’ in TSTG, which is not the case in ISOMAP. Any data items in the cluster ‘6’ are not located close
to the cluster ‘7’ in ISOMAP, but some data items between the two clusters overlap in TSTG. Such analyses
cannot be easily made without the alignment.

4.4 Dimension Reduction: Supporting Multiple Perspectives

Different dimension reduction methods can reveal different aspects of data. To show an example, we now look
into the first two figures in Figure 4(b) from the perspective of supervised vs. unsupervised methods. Given
a certain assignment of cluster labels, a supervised method, TSTG, gives a clear overview in terms of cluster
relationships since most of the clusters are shown relatively compact, as shown in the first figure. On the contrary,
an unsupervised method, ISOMAP, may reveal different aspects of data. For example, the second figure indicates
that the cluster ‘6’ is composed of two distinct subclusters shown at the top left and the bottom right. However,
when the data do not have a clear cluster structure, e.g., most of the text document corpora, unsupervised
dimension reduction methods give the results similar to the second figure in Figure 3, which significantly reduces
the utility of the scatter plot. In this case, supervised dimension reduction would be the only choice to start
with in visual analytics.

Even with a single dimension reduction method with different parameter values, different aspects of data can
be obtained. In Figure 5(a), one can see that the cluster ‘5’ (the digit ‘4’) of the Pendigits data set moves from
the top left near the cluster ‘10’ (the digit ‘9’) towards the cluster ‘7’ (the digit ‘6’) as the ISOMAP parameter
k increases. In general, ISOMAP with a smaller k value focuses more on preserving the local neighborhood
relationships by making non-neighborhood distances longer. Based on the sample data of each digit shown in
5(b), it can be inferred that the digit ‘4’ is represented much closer to the digit ‘9,’ which forms their neighborhood
relationships with small k values, than to the digit ‘6.’ As the k value increases, the neighborhood relationship
between the digits ‘4’ and ‘6’ starts to be formed, which is why they become closer at a bigger k value. In this
way, varying the parameter values with the same method can further reveal different interesting insight about
data.



Figure 6: The scatter plot view of two different clustering, k-means and NMF, using TSTG for the InfoVisVAST
data set. The right figure is aligned with respect to the left one for both clustering and dimension reduction.

4.5 Clustering: Combining Knowledge from Different Clustering

Clustering is a challenging task, and any single clustering method tends not to give fully satisfactory results. The
testbed system can remedy this problem by enabling users to perform different clustering methods and obtain
more meaningful clusters by comparing between them. Figure 6 shows the scatter plot views of TSTG with the
cluster labels obtained by two different clustering methods, k-means and NMF. The InfoVisVAST data set are
used, and the keyword summaries of clusters for each method are as follows:

k-means
1. graph, trees, node, layout, edge, draw, clusters
2. querying, interface, multiple, databases, expressive, temporal, magnification
3. document, text, collections, words, sequential, searches, information
4. multivariate, variable, data, aggregate, coordinates, multidimensional, flow
5. 3d, spatial, labelling, animation, map, coloring, display, information
6. treemaps, hierarchy, hierarchical, layout, focuscontext, spacefilling, algorithms
7. clusters, dimensions, image, visualization, measures, number, reduction
8. analytics, model, systems, video, decisions, information, framework
9. networks, traffic, arcs, diagram, social, internet, duplicate

10. collaboration, designed, histories, wikipedia, information, supports, story

NMF
1. graph, clusters, algorithms, methods, data, state, structured
2. querying, interface, databases, searches, temporal, multiple, data
3. document, text, image, content, information, collections, searches
4. dimensions, parallelize, coordinates, multivariate, multidimensional, datasets, scatterplots
5. 3d, spatial, landscapes, information, display, animation, spaces, encoded
6. treemaps, hierarchical, layout, ratio, algorithms, spacefilling, aspects
7. trees, hierarchy, node, genealogical, decisions, draw, layout
8. designed, model, information, analytics, framework, systems, data
9. networks, traffic, social, querying, analysis, data, flow

10. collaboration, analytics, wikipedia, analysts, supports, knowledge, shared

Among these clusters, the cluster ‘1’ of the k-means clustering has a clear meaning of graph-related visualization,
e.g., graph drawing, graph layout, and graph clustering. This cluster is also shown to be clearly separated from
the other clusters in the left figure. As we perform brushing-and-linking on this cluster, it turns out that this
cluster mainly corresponds partially to the clusters ‘1,’ ‘6,’ and ‘7’ of the NMF clustering. Considering that
these clusters contain the keywords, ‘graph’ and ‘layout’ and their separations from the other clusters in the
right figure are not as clear as that of the cluster ‘1’ in the left figure, one can regard the cluster ‘1’ of k-means
as a cluster with better quality.

On the other hand, in the NMF clustering, the cluster ‘4’ seems to be clearly related to multi-variate/multi-
dimensional data visualization. By brushing-and-linking on this cluster, we found it corresponds mostly to the
clusters ‘4’ and ‘7’ of the k-means clustering, which makes sense based on their keyword summaries although
they are relatively more ambiguous than the cluster ‘4’ of the NMF clustering. This observation is also supported
by their cluster separations in Figure 6 , which indicates a clearer separation of the cluster ‘4’ in the right figure
than that of the clusters ‘4’ and ‘7’ in the left figure.

As shown in these cases, one can apply different clustering methods and take full advantage of them by
visually analyzing them in the testbed system.



5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the visual testbed system for dimension reduction and clustering in high-
dimensional data visual analytics. The main contribution of our system is to bring a wide variety of traditional
and state-of-the-art dimension reduction and clustering methods to visual analytics. The testbed system provides
full control of these methods with interactive visual access to their results. In addition, our system offers a flexible
extensibility for new data types and methods.

As future work, we plan to tackle a scalability issue. As the size of data gets bigger, their computational
time takes even longer, which hinders real-time interactive visualizations. Another scalability problem is due to
the limited amount of screen space. Even if the computational methods maintain efficiency, a large number of
data items cause a clutter in visualization. These issues will be handled using various approaches, e.g., sampling,
online learning algorithms, etc.

In addition, we plan to enhance the alignment capability by incorporating other advanced algorithms and
user interfaces. To be specific, the currently used algorithms do not change anything in the reference view, and
the Procrustes analysis does not change internal relationships within each visualization at all. This may limit the
performance of alignment for easy comparison between visualizations when they are significantly different. To
deal with this problem, we plan to utilize other advanced methods such as graph-embedding-based methods.37
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