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Fig. 1: Interface design for interactive clickstream analysis: the pattern view shows maximal sequential patterns extracted from
the dataset; the sequence view displays raw sequences in coordination with user interaction in the pattern view; the context view
provides contextual information on the segment and hierarchical level of the dataset being explored.

Abstract—Modern web clickstream data consists of long, high-dimensional sequences of multivariate events, making it difficult to
analyze. Following the overarching principle that the visual interface should provide information about the dataset at multiple levels
of granularity and allow users to easily navigate across these levels, we identify four levels of granularity in clickstream analysis: pat-
terns, segments, sequences and events. We present an analytic pipeline consisting of three stages: pattern mining, pattern pruning
and coordinated exploration between patterns and sequences. Based on this approach, we discuss properties of maximal sequential
patterns, propose methods to reduce the number of patterns and describe design considerations for visualizing the extracted sequen-
tial patterns and the corresponding raw sequences. We demonstrate the viability of our approach through an analysis scenario and
discuss the strengths and limitations of the methods based on user feedback.

Index Terms—Clickstream Data, sequence mining, visual analytics, event sequences

1 INTRODUCTION

Companies and individuals collect huge amounts of clickstream data
from websites and applications, in the hope that this data will allow
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them to better understand users’ behavior and intentions. These click-
streams consist of series of ordered events triggered by user interac-
tions. For example, e-commerce websites track visitors’ browsing his-
tory to infer their intent and preferences for more effective online mar-
keting, and application builders log user behavior to uncover usability
problems and guide users to new product features.

To analyze such data, researchers have proposed a variety of vi-
sualization techniques [15, 23, 38] and sequence mining methods
[2, 8, 25]. Visual analytic approaches seek to integrate visual ex-
ploration with automatic computation for real-world analytic tasks
[13, 16, 21, 26, 32].

Clickstream analysts need to understand common paths taken by
users, but doing so remains a significant challenge. Due to the high
cardinality of the events and the long sequences, naive visual explo-
ration of raw sequences is often inadequate to extract high-level struc-



tures. While the data mining literature has contributed algorithms to
summarize sequential data, there is little guidance on how these algo-
rithms may be used in actual interactive analysis. On the other hand,
visual analytic researchers have largely focused on providing statis-
tical summaries of user-defined patterns. Few have investigated the
issue of combining data mining and visualization design in depth.

In this paper we propose methods for interactive visual analysis of
clickstream data, with a focus on understanding common paths shared
by visitors. Applying a user-centered design process, our work makes
three main contributions:

1. Following the principle to present and explore data across mul-
tiple levels of granularity, we identify four levels of granularity (pat-
terns, segments, sequences and events) in the context of analyzing
clickstreams as a result of several design iterations.

2. We propose a three-stage analytic pipeline for clickstream anal-
ysis: pattern mining, pattern pruning and coordinated exploration be-
tween patterns and sequences. In the current implementation, we focus
on mining maximal sequential patterns (MSP), discuss the behavior of
the mining algorithm and present techniques to prune the output space
for visual presentation. We then describe design considerations for vi-
sualizing the extracted sequential patterns and the corresponding raw
sequences.

3. To support exploration across abstraction levels, we design novel
visualization and interaction techniques in a dual view interface.
Analysts can align and segment sequences based on key events in se-
quential patterns. In addition, we introduce hierarchical pattern mining
to help analysts focus on the desired level of granularity.

We illustrate the utility of these methods in an analysis scenario and
discuss their strengths and limitations based on user feedback.

2 METHODS

This research is the result of a longitudinal study with three analysts
and two product managers over a period of three years. The three ana-
lysts work for a software company that sells applications and services
online. Their daily jobs involve analyzing and reporting visitor behav-
iors on the company’s website. They write queries to retrieve click-
stream data from Hadoop servers, wrangle and analyze the data inside
Excel, and prepare presentations on any insights they have found. The
two product managers work on analytics products for digital market-
ing. We included product managers because they work with a much
larger set of users and offer a high-level perspective on the common
tasks shared by analysts from different companies.

To understand the scale of real-world data and the current practice
of clickstream analysis, we conducted in-depth interviews with each of
the analysts. The interviews were semi-structured, where we asked the
analysts to explain the characteristics of the datasets they were work-
ing on, and the tools they were using. To get a first-hand experience
of what their workflows were like, we performed the same analysis
routines ourselves on the same datasets using the same tools. We also
asked them to enumerate a list of specific questions that they would
like to answer, and to identify those that were not supported by current
tools. These exercises helped us exclude feature requests that could be
addressed with engineering efforts and focus more on research chal-
lenges specific to visual analytics.

After identifying an initial set of analytical goals and tasks, we
embarked on an iterative process to explore design ideas, implement
prototypes and refine task specifications. We realized that mockups
were insufficient to convey how a design might be useful to the ana-
lysts, because mockups were often based on small and often simpli-
fied datasets, and did not translate well to account for the complexity
in real-world datasets. Consequently, we adopted a strategy of build-
ing interactive prototypes to explore the design space and get feedback
from the users.

3 DATA, TASKS AND EXISTING TOOLS

Based on our observations and the interviews, we find that clickstream
data has three distinguishing characteristics:

The cardinality of the event set is large. The number of unique
events for a modern website can range from thousands to tens of thou-
sands. Most events correspond to a click that loads a web page, but
sometimes a single click can also trigger multiple system events.

The events are multivariate. Figure 2 shows a typical click-
stream recording the behavior of a single visitor. The complete event
names reflect the hierarchical organization of a website. For example,
an error page generated due to an invalid input email is grouped un-
der three levels of hierarchy: Account→ IMS→ signup. In addition
to these hierarchical page names, each event can be associated with a
number of variables such as device type (mobile or desktop), browser
or geographic location.

The sequences are long. It is common for a single session to
generate hundreds of events. Companies also use cross-device trackers
to join visitor sessions across multiple devices, yielding even longer
sequences. The long sequence length and the high-cardinality event
set imply that few clickstream sequences are identical.

Fig. 2: A single clickstream with event name at each step, demonstrat-
ing the length of sequence and the high event cardinality.

Due to the high event cardinality and long sequences, simple data
aggregation and visualization techniques do not work well in sup-
porting exploratory analysis. Figure 3 shows a variant of the icicle
plot [15], visualizing 250 clickstreams. The events are color-coded
by event categories, and each clickstream starts from the top to the
bottom. Visualizing raw clickstreams using such visualizations is not
useful for the analysts: the limited screen real estate entails that we can
not display all the sequences without scrolling, even if we use pixel-
based techniques [12]; similarly, the long sequences are often cut off,
and the view port can only show sequence segments. Even with event
aggregation, the visualizations often contain too much noise. While it
may be possible to spot outliers (e.g. the long green sequences on the
right), it is difficult to identify high-level salient patterns.

Since there is no effective way to provide a visual overview of
the data, the analysts often resort to visualizations showing summary

Fig. 3: A visualization of 250 clickstreams. Each rectangle represents
an event, and the order of events goes from top to bottom. The color
of the rectangles represents event category.



(a) (b)

Fig. 4: (a) A flow visualization based on the Sankey diagram in Google
Analytics, showing top pages at the first few steps in the clickstreams.
(b) A funnel visualization from Adobe Analytics showing the drop off
of visitors at key pages defined by analysts. The green areas represent
the absolute number of visitors at each checkpoint, and the grey areas
represent the percentage of visitors from the previous stage reaching
the next stage.

statistics of the sequences. Two commonly used tools are the previ-
ous/next event flow visualization and the fall out visualization. Com-
mercial applications such as Google Analytics and Adobe Analytics
offer both types of visualizations. The previous/next event flow tool
presents the top events before or after a few user-chosen events in the
form of a Sankey diagram (Figure 4a). Such visualizations still suf-
fer from the problem of only showing a small subset of the events
and paths, and can result in visual cluttering [38]. Alternatively, the
analysts can define a funnel, which consists of a sequence of events
that the visitors are expected to go through. The fall out visualiza-
tion shows summary statistics of the number of visitors going through
the funnel (Figure 4b). It offers insights on the proportion of visitors
reaching each key event in the funnel, but the analysts have no idea
what is happening between each pair of events in the funnel, neither
can they drill down to examine detailed information on individual se-
quences.

In short, these existing tools provide limited support for analyzing
clickstream data, and the analysts describe the following tasks they
need help with:

1. Identify key customer journeys: The analysts confirm that it
is impossible to see all the sequences in their entirety. They are most
interested in understanding the common paths taken by visitors and
want to see an overview of visitors’ navigation patterns. One analyst
remarks: “I want a visualization that tells me, this is probably what’s
happening most of the time: 87% of the time, people who clicked on
page A also clicked on page B”.

2. Drill down into individual sequences: While showing every
sequence will be overwhelming, the analysts still want to be able to
examine individual events in sequences of interest. The analysts de-
scribe a tool that allows them to start at a high level and then drill down
so that they can see sequences across multiple levels of granularity.

3. Bring dimensions into analysis: Since the events are multivari-
ate, it is important to understand sequences of events from different
perspectives, as reflected in event names or device information.

4. Reveal multiple occurrences of events: An event can repeat
multiple times in a sequence. This kind of multiple occurrences often
indicate loops in visitors’ navigation patterns and may point to poten-
tial inefficiency or bugs in website design. Current tools often collapse
such multiple occurrences into aggregated count and hide such infor-
mation. The analysts want a visualization that reveals such patterns if
they exist in the dataset.

4 RELATED WORK

In principle, visualization and analytic methods for event sequence
data are generally applicable to clickstream data. Previous work on
visualizing event sequence data often aggregates raw sequences into a
tree and applies hierarchical visualization techniques such as Sunburst
[30] and the icicle plot [15]. Alternatively, we can aggregate events
within each step and visualize the data using flow diagrams (e.g. the

Sankey diagram [28] and the alluvial diagram [29]) and matrix-based
approaches [38].

These techniques of visualizing raw sequences with simple data
transformation rarely work on complex and high-volume real-world
datasets. Instead of showing the analysts an overview of the data,
query-driven approaches to event sequence analysis find matching se-
quences to user-defined patterns and show summary statistics as visu-
alizations [14, 16, 37]. While such approaches are effective to answer
specific questions, the analysts need to be able to anticipate potential
patterns that exist in the dataset and may miss valuable insights.

Visual analytics approaches to event sequence analysis seek to com-
bine the strengths of automatic computation with the flexibility of in-
teractive exploration. Wei et. al. use a self-organizing map to cluster
and visualize clickstream data [34]. Similarly, Wang et. al. perform
unsupervised clustering on clickstream data by partitioning a similar-
ity graph [33]. We considered using clustering to perform data reduc-
tion but encountered interpretation and trust issues in earlier iterations
of our visualization design (Section 6). Unsupervised clustering has
other downsides: it works best with a machine learning expert in the
loop to fine-tune the parameters, and requires a domain expert to pro-
vide sensible cluster labels. Maguire et. al. extract motifs from scien-
tific workflow data for better visual abstractions [20]. However, motif
extraction is less effective on clickstream data given the high event
cardinality and variation.

Mining frequent sequential patterns, on the other hand, is a promis-
ing data reduction approach that offers interpretable algorithmic pa-
rameters and results. FP-Viz is one of the earlier works that visualizes
frequent itemsets mined from the data using the Sunburst technique
[30]. CoCo [21] and the High-Volume Hypothesis Testing method
[22] examine the problem of cohort comparison by extracting subse-
quences, but do not explore in depth how to design for non-consecutive
sequences. Frequence [26] focuses on mining frequent patterns and
provides a visual interface for pattern exploration. The main contribu-
tion of Frequence is the enhancements to the SPAM algorithm [2] to
handle real-world constraints, and the interface makes use of conven-
tional flow visualizations. In this paper, we choose the VMSP algo-
rithm [7] instead of the SPAM algorithm to mine a more compact set
of patterns, and we focus more on visualization and interaction design.

5 DATA PREPROCESSING: EVENT CATEGORIZATION

Given the high cardinality of events, our first step was to aggregate
individual events into a manageable number of categories. We focused
on event names since other dimensions of events often have a small
set of predefined categories (e.g. device type) or a natural hierarchy
(e.g. geo location). Our first attempt was to tokenize the event names
and apply text-mining methods to extract meaningful categories. We
evaluated the following three approaches:

Categorize by (sub)domain name: Since most event names are es-
sential URLs with separators denoting a domain hierarchy (e.g. “my-
business.com:solutions:web”), a naive approach is group the events by
domains. However, we found that the design of a website’s organiza-
tion does not always reflect meaningful user intent or activities. For
example, over 30% of the events in one of our datasets are under the
root domain name (www.companyname.com). It is impossible to dis-
tinguish between these events under this naive approach.

Categorize by token frequency: Another approach is to consider
tokenized event entries as a group of terms. We first adopted term
frequency-inverse document frequency (tf-idf) to extract the represen-
tative terms, we then use those high-frequency terms as features to
describe the events. This approach again failed to obtain meaning-
ful categories, since the top-level domain names dominated the fre-
quency terms, while the more informative event indicators were buried
in deeper segments.

Categorize by topics: We also tried applied the Latent Dirichlet
Allocation (LDA) model [3] to separate event entries into distinct cat-
egories. LDA associates each event with a “topic”, and tries to choose
these topics so that semantically related events are associated with the
same topic. Our hope was that we could use these topics as higher-
level event types. Unfortunately, 90% of the events fell into a single



topic, making the results unusable.
Ultimately, we had to work with analysts to manually devise rules

to categorize the events. Although none of the above unsupervised
techniques yielded acceptable categorization results out-of-box, they
served as good references that allowed us to accelerate the manual
labeling process with the analysts.

6 CHOOSING HIGHER LEVELS OF GRANULARITY

The complexity and scale of datasets entail the need to first summa-
rize or reduce the data before visualizing it. In this section, we discuss
design rationales and lessons learned from our earlier exploration with
various data mining techniques and the corresponding visualization
designs. This exploration is guided by an overarching principle ab-
stracted from Tasks 1 and 2 in Section 3: the visual interface should
provide information about the dataset at multiple levels of granularity
, and allow users to easily navigate across these levels. This principle
has been articulated as a general guideline for visual analytics research
[11] and deployed in prior work on system design [17, 24]. In the case
of clickstream analysis, two levels of granularity are a given: events
and sequences. The key challenge here is to pinpoint higher granular-
ity levels that meet the following criteria: first, human users should be
able to easily interpret the meaning of these granularity levels; second,
they need to understand how these levels relate to each other; finally,
information presented at these levels are potentially interesting or use-
ful. We now review the data mining methods and evaluate them using
these criteria.

6.1 Motif Extraction
Motifs (or n-grams) [20] are lists of consecutive events that frequently
appear in event sequences. We first thought of extracting motifs to give
analysts a high-level picture of the data. We extracted n-grams with n
ranging from 2 to 5, and presented the motifs in a list. Users can sort
the motifs either by length or by frequency. When we computed motifs
on sequences aggregated by event categories, the extracted motifs are
often dominated by transitions between events from the same category.
Such patterns make sense since consecutive events are often triggered
on the same web page of the same functionality, but are not useful.

We thus tried extracting motifs directly on raw sequences. The an-
alysts considered the extracted motifs easy to understand. They also
wanted to examine the motifs in the context of raw sequences, so that
they could see what happened before and after the motifs. One prob-
lem with the motifs was that most of them were not really interesting.
For example, variations of the checkout funnel (“load cart”, “payment
info”, “payment confirmed”) and the login processes are typical motifs
we extracted from the data, but they are hardly surprising.

6.2 Sequence Clustering
Another obvious way to summarize sequences is clustering. We tried
three clustering methods: bag-of-events, bag-of-motifs and mixture of
Markov Chains. The bag-of-events model ignores sequence informa-
tion and only considers the relative frequencies of events. Although
the resulting clusters did reveal event distributions (e.g. one cluster
contained all sequences containing tutorial pages, while another fea-
tured many product information pages), the order in which the users
visits the website was lost. The bag-of-motifs model extracts motifs
and uses them as features for the clustering. The mixture of Markov
Chains (MMC) model assumes pre-existing clusters defined in terms
of a first-order Markov chain, and uses an expectation-maximization
approach to compute the probabilities of a sequence being associated
with each cluster. Each sequence is put into the cluster with the highest
probability. One advantage of the MMC model is that it characterizes
less-frequent transitions in the event sequences, which can be of po-
tential interest to analysts.

To visualize the clusters, we show them as individual blocks (Fig-
ure 5). Due to the sheer size of the event sequence dataset and the
limited screen space, only portions of selected sequences within each
cluster can be shown. To reveal the most representative sequences
within each cluster, we chose to sort the sequences by their affinity
coefficients. We also provided multiple interactions to help reduce

Fig. 5: A design alternative based on sequence clustering. Refer to the
supplemental materials for a complete review of the designs we have
considered.

the visual complexity. When hovering a single sequence, the detailed
event information will be revealed. Using the side panel, we allow the
users to change the colors of event categories on-the-fly. Users can
even set event categories that are less of concern to transparent to re-
duce the number of color channels, and the clustering result will be up-
dated accordingly. Furthermore, we allow users to stack the sequences
both vertically and horizontally. Vertical stacking helps condensing
events of the same category (color), or repeated motifs into super mo-
tifs. Horizontal stacking merges sequences consist of the same set of
events (a bar chart histogram is used to indicate the number of same
sequences). Stacking in both directions can simplify the sequences
within each clusters to reduce visual complexity. In addition, we also
added an n-gram view to reveal the statistics of transitions between
events (bottom part of Figure 5).

This clustering-based design helps surfacing groups of sequences.
However, it is hard to understand how the clusters differ from each
other. In addition, it is difficult to provide visual or text summaries
for each cluster. The lack of meaningful concepts to characterize these
clusters led us to explore other data mining methods.

6.3 Sequential Pattern Mining
Similar to motifs, sequential patterns are ordered list of events that co-
occur frequently in a sequence dataset. The main difference is that
the events need not be consecutive. Sequential patterns are thus more
effective in finding frequent item sets despite the noise and hetero-
geneity of data. Compared to clustering methods, the parameters and
end results of pattern mining algorithms are usually easy to interpret,
and users can understand how the extracted patterns are related to raw
sequences.

In terms of task support, sequential pattern mining affords present-
ing and relating information at four granularity levels: patterns, seg-
ments, sequences and events (Task 1 and 2). A pattern is a meaningful
abstraction of a set of raw sequences. It can be further broken down
by the events into pattern segments, an idea inspired by the analysts’
comments on seeing activities happened before and after a motif in
the context of original sequences. In addition, if loops are a dominant
pattern, they should remain visible after data reduction (Task 3).

In the next three sections, we present details on the pattern mining
algorithm we use, the method to prune the pattern space, and design
rationales for the interactive visualizations.



Fig. 6: Statistics on the datasets we have analyzed and the maximal sequential patterns extracted from these datasets. The patterns are computed
on a quad-core 2.7 GHz MacBook Pro (OS X 10.11.5) with per-core 256K L2 caches, shared 6MB L3 cache and 16GB RAM.

7 MINING SEQUENTIAL PATTERNS

In this section, we review the concept of sequential pattern mining.
We focus on a specific type of sequential patterns: maximal sequential
patterns (MSP).

Definition 1. Sequence Dataset: A sequence dataset D is an un-
ordered set of sequences: D = {S1,S2, ...,Ss}

Definition 2. Sequence: A sequence S is an ordered list of events
Ei, where i denotes the index of the event in the sequence: S =
[ E1,E2, ...En ].

Definition 3. Containment, Super Pattern and Sub Pattern: A se-
quence Sa = [ A1,A2, ...Am ] is contained in another sequence Sb =
[ B1,B2, ...Bn ] if there exist integers 1≤ i < j < ... < k ≤ n such that
A1 = Bi, A2 = B j , ..., and Am = Bk. We denote containment as Sa v Sb.
Sb is a super pattern of Sa, while Sa is a sub pattern of Sb.

For example, consider the sample dataset with three unique events
α , β , γ and the four sequences in Table 1. Sequence 2 is contained
in sequence 1, and sequence 1 is a super pattern of sequence 2. Se-
quences 3 and 4 are not contained by any other sequences.

# Sequence Metric (number of visitors)

1 [ α , β , β , γ , γ , β , β , γ , γ ] 30
2 [ α , γ , β , γ , γ ] 112
3 [ γ , α , β , γ , γ , γ ] 57
4 [ β , γ , β , α , γ ] 6

Table 1: A sample clickstream dataset.

Definition 4. Sequential Pattern: A sequential pattern (or “pattern”
for short) P is a sequence contained in one or more sequences in the
sequence dataset D: ∃ {S1,S2, ...Sk} ⊆ D, k > 0 such that Pv S1,Pv
S2, ...,Pv Sk. We call each event in a sequential pattern a Key Event.

P = [ β 99K γ 99K γ ] is a sequential pattern that summarizes the
sequence dataset in Table 1. We use the dashed arrow 99K to differen-
tiate sequential patterns from regular event sequences.

Definition 5. Support Set and Support of a Pattern: The support
set of a pattern P is the set of sequences in a dataset D that contain the
pattern: supset(P) = {S|S ∈ D,Pv S}.

The support of a pattern P is the percentage of sequences in the
dataset that contains the pattern [1]: supp(P) = |supset(P)|

|D| ×100%.
It is rare for a sequential pattern to be contained in all of the se-

quences. In the dataset in Table 1 for example, the support of pattern
[ β 99K γ 99K γ ] is 100%, and the support of [ β 99K γ 99K γ 99K γ ]

is 50% (only sequence 1 and 3 contain this pattern). Note that here
we are computing the support based on the number of unique se-
quences that contain the pattern. If we use other metrics associated
with the sequences (e.g. number of visitors in Table 1), the support of
[ β 99K γ 99K γ 99K γ ] is 42.4%.

Definition 6. Segment: Given a sequential pattern P = [ E1 99K
E2 99K , ..., En ], a segment Seg is a sub-pattern consisting of two ad-
jacent key events in the pattern: Seg = [Ei 99K Ei+1], 0 ≤ i ≤ n− 1.
For example, [ β 99K γ ] is a segment of [ β 99K γ 99K γ ]

Definition 7. Maximal Sequential Pattern: Given a minimum sup-
port minsupp, a pattern is maximal if none of its super patterns has
support greater than or equal to minsupp [1].

Assume that we want to find sequential patterns with a minimum
support of 100% out of the sequences in Table 1, several patterns
match this criterion. Out of these, P = [ β 99K γ 99K γ ] is a maxi-
mal sequential pattern; Q = [ β 99K γ ] is also a matching sequential
pattern, but it is not maximal since P contains Q and supp(P) = 100%.

Many algorithms are available for mining maximal sequential pat-
terns [5, 7, 8, 9, 18, 19, 27]. In our current investigation, we choose the
vertical maximal sequential pattern mining algorithm (VMSP) because
it does an exhaustive search in the pattern space while maintaining the
best performance in terms of computation time [7]. We use the Java
implementation of the algorithm in the SPMF library [6].

Given the high cardinality of events in our datasets, we have the
option to aggregate events by predefined categories before performing
pattern mining. We have experimented with this approach and de-
cided not to aggregate the events. The maximal patterns mined with
sequences in full event names manifest greater variety and offer richer
information to the analysts.

To extract all the potential sequential patterns of interest in the
dataset to the analysts, we want to search for all the maximal pat-
terns with different levels of support. For example, Table 2 shows all
the maximal sequential patterns in Table 1 with different supports. We
iteratively compute patterns by varying the level of support minsupp.
Given a predefined range [x, y], and starting from y, we iteratively
decrease minsupp by a fixed percentage δ . To ensure an exhaustive
search, the theoretical setting for the decrement is that δ = 1

|D|×100%,
where |D| denotes the cardinality of the dataset. In practice, the VMSP
algorithm will return patterns with support that is slightly higher than
the input minsupp parameter. For the datasets we are working with,
we find that a decrement of 3% is sufficient to capture all the patterns.
We run the VMSP algorithm using this approach on seven clickstream
datasets. These datasets are from two different companies and repre-
sent data from different time periods and user group. Figure 6 shows
the size and characteristics of these datasets.

Besides maximal patterns, other pattern definitions are available,
such as frequent patterns [2] and closed patterns [7]. We chose maxi-
mal patterns over frequent patterns or closed patterns because we want
to avoid presenting too many patterns for analysts to digest, and by
definition maximal patterns are a subset of closed patterns, which are
in turn a subset of frequent patterns. As Figure 6 shows, clickstream
datasets can contain too many patterns even for the strictest definition
of maximal patterns.

8 PRUNING SEQUENTIAL PATTERNS

Depending on the dataset, a given minsupp might yield no maximal
sequential pattern or multiple ones. After iterating over the support
levels and collecting unique sequential patterns, the number of patterns
found and the time taken also vary by dataset. Figure 6 presents the
statistics on mining MSPs from the seven datasets for supports ranging
from 95% to 15% with δ = 3%. In general, the time taken to mine
the pattern is positively correlated with the number of patterns in the
dataset.



Support Maximal Sequential Patterns Matching Sequence IDs

100% [ β 99K γ 99K γ ] 1, 2, 3, 4
75% [ γ 99K β 99K γ 99K γ ] 1, 2, 3

[ α 99K γ 99K γ 99K γ ] 1, 2, 3
50% [ γ 99K γ 99K γ 99K γ ] 1, 3

[ β 99K γ 99K β 99K γ ] 1, 4
[ α 99K β 99K γ 99K γ 99K γ ] 1, 3
[ α 99K γ 99K β 99K γ 99K γ ] 1, 2

Table 2: Maximal sequential patterns extracted from Table 1

The VMSP algorithm reduces the sequence length effectively (the
maximum pattern length is 8 for the seven datasets in Figure 6), but
not necessarily the number of sequences. As shown in Figure 6, the
number of extracted patterns is sometimes even greater than the num-
ber of sequences. Simply showing patterns with the top k supports is
not ideal because the support is only one measure of a pattern’s rele-
vance. When we examine the top 10 patterns extracted from each of
the datasets, for example, we have observed that many patterns share
the same set of unique events and differ only in terms of the number of
occurrences and the index of certain events. In addition, many patterns
have similar support levels and are contained in a similar set of input
sequences.

To prune the pattern space, we use the Jaccard index [10] to measure
the similarity between a pair of patterns:

J(P,Q) =
|supset(P) ∩ supset(Q)|

|supset(P)| + |supset(Q)| − |supset(P) ∩ supset(Q)|

If the support sets of the two patterns have no overlap, J(P,Q) = 0;
if the two patterns have identical support sets, J(P,Q) = 1.

Fig. 7: The number of patterns after pruning with different values of
threshold t. The line graphs at the top show the statistics for three
datasets with around 6k patterns, the bottom line graphs show the
statistics for the other four datasets with smaller number of patterns.

To generate the final pattern set L to be shown to the analysts, we
sort the patterns by their supports and pattern length (longest pattern
first) and add each pattern P to L if two conditions are met: 1) the
Jaccard index between P and each element in L is below a predefined
threshold t; 2) the two patterns do not contain the same set of unique
events. To efficient compute the Jaccard index, we implemented this
approach using bitmap representations with the bitwise AND operator.
Figure 7 shows the number of patterns with different values of t for the
seven datasets.

9 VISUALIZATION AND INTERACTION DESIGN

We now identify the following design goals for the visual interface
based on the mined maximal sequential patterns:

1. Visually distinguish sequential patterns from raw sequences:
To differentiate patterns from input sequences, we need to design dif-
ferent visual representations for these two types of data.

2. Allow analysts to focus on data of interest: Since the VMSP
algorithm can still produce a large number of patterns, and a pattern
can represent hundreds of sequences or more, the analysts need to be
able to filter out irrelevant data and focus on a particular pattern, a
pattern segment or selected sequence segments.

3. Support easy navigation between levels of abstraction: an-
alysts should be able to examine sequential patterns, drill down to
detailed sequence and event information, and focus on segments of
interest in a unified interface.

The final design consists of two major views (Figure 1): the pattern
view displays extracted maximal sequential patterns, and the sequence
view shows individual clickstream sequences for detailed analysis. An
auxiliary context view provides contextual information on which part
of the dataset is the current focus of exploration. The views are coordi-
nated via interaction techniques including overview+detail, sequence
alignment and segmentation, and hierarchical pattern mining.

9.1 Pattern View

The pattern view presents sequential patterns extracted from the
dataset and pruned using the approach described in Section 8. We
display the patterns from left to right, sorted by metrics such as sup-
port or pattern length. When the number of patterns is still too large
after pruning, users can filter patterns by pattern length and search for
patterns containing a particular event.

For each pattern, we lay out the events from top to bottom. The pat-
terns always start at step one, and the length of the patterns represents
the average sequence length in the corresponding support sets. For ex-
ample, in Figure 8a, the support set of the pattern containing only one
event “upgrade eligibility” has an average sequence length of 32. For
each pattern, the vertical position of each event represents the mean
number of clicks the visitors took to reach that event (Figure 8a). Here
we see that on average it takes longer for visitors to reach the “upgrade
eligibility” page than to reach the billing pages. Since the mean statis-
tics are sensitive to outliers, the analysts can also change the vertical
scale to represent other summary statistics, such as the median num-
ber of clicks. We have observed, based on many of the datasets we
have worked on, that consecutive events in a pattern tend to happen at
the beginning of sequences, which results in visual occlusion when we
plot the events using a linear scale. As a result, we choose a log scale
by default.

The events often have long, hierarchical names such as “bill:Bill
centre on-line: Bills, quick breakdown”. To avoid visual occlusions
that arise due to such long names, we split the labels by delimiters that
separate the hierarchical levels and use color to encode the first token,
which is usually the event category. The color palette is based on the
20 categorical color scale in D3 [4]. We display the last token as the
event name. The analysts can hover a pattern by placing the cursor
over the visitors icon (Figure 8a) or select a pattern by clicking on the
icon. The other patterns will fade into the background, and the focused
pattern will display the full event names (Figure 8b).

For analysts who are familiar with funnel analysis and visualiza-
tion, each of these patterns resembles a funnel. The only difference is
that these patterns are automatically suggested by the tool. According
to the analysts, they are interested in traffic statistics for each of the
events. We display such information at the top of each event, showing
the number and percentage of visitors reaching that event. In general,
the number of visitors decreases towards the end of the pattern. The
percentage of visitors for the last event in the pattern always denotes
the support of the pattern. To provide a sense of continuous visitor
flow, we use the width of the line segment connecting adjacent events
to represent the change in traffic.



(a) The vertical scale represents the aver-
age number of clicks taken by visitors to
reach that event, and the size of the links
represents the number of visitors transition-
ing between events.

(b) Hovering over or clicking on the visi-
tor icon on top of a pattern highlights the
pattern with complete event names, and the
other patterns fade to the background.

Fig. 8: The pattern view showing two maximal sequential patterns. It
takes longer for visitors to reach the “upgrade eligibility” page than
the billing pages.

9.2 Sequence View
The sequence view provides detailed sequence information for a se-
lected sequential pattern. When users click on the visitor icon at the
top of a pattern, the sequence view displays sequences in the pattern’s
support set. The events in each sequence are laid out from top to bot-
tom, and color coded by a chosen event attribute (e.g. in Figure 9, the
color represents event category). For datasets with multivariate events,
users can choose which categorical attribute should be encoded using
color. When hovering over an event in a sequence, a tooltip will ap-
pear, showing the full event names for the adjacent events (Figure 9).

Fig. 9: The sequence view shows individual sequences laid out from
top to bottom. The top bar chart shows the aggregated metrics for each
sequence. Hovering over an event displays the event names.

Each sequence may have a number of metrics such as the number

Fig. 10: Clicking on an event in the pattern view will align the click-
streams in the sequence view by that event. In this visualization, the
clickstreams are aligned by the second “UK:MyAccount:Login” event
in the pattern on the left.

of visitors following that path. We use a gray bar chart on top to show
such information. A design alternative is to encode such quantitative
metrics as the width of the sequence. Such an approach tends to give
visual emphasis to the most frequent sequences, and less frequent se-
quences may not be easily identifiable. While frequent sequences may
be interesting, outliers and less frequent sequences can be more im-
portant in actual analysis. As a result, we choose to encode sequence
metrics as a bar chart in order to give every sequence equal emphasis.

The order of the sequences influences the visual pattern emerging
from the display. We sort the sequences such that events belonging
to the same category are placed next to each other (Figure 9). Upon
closer inspection, the result of this sorting algorithm yields a visual-
ization resembling an icicle plot [15], which has been used in event
sequence visualizations [35, 36]. The main difference between the se-
quence view and the icicle plot is that we maintain the individuality
of the sequences and do not merge the events at each step. Doing so
gives us the flexibility to show detailed event names on demand, and to
support alternative sorting metrics such as sequence length or number
of visitors. We have also considered alternative methods to visualize
the sequences such as the Sankey diagram or the MatrixWave design
[38]. These methods do not provide similar levels of scalability and
flexibility.

9.3 Highlight Key Events and Align Sequences by Event
By default, the sequences align at the top and start at the first step in
the Sequence View. It is not visually clear to the analysts how the
sequences in a pattern’s support set manifest the pattern. We design
two features to allow the analysts to understand the relationships be-
tween the pattern and the sequences better. First, users can turn on
event highlighting, which renders dark gray borders around each key
event in the sequences (Figure 10). Second, users can click on any of
the events in a pattern, the sequences will be aligned by the chosen
event, allowing users to examine the leading and trailing events (Fig-
ure 10). We apply animated transitions to show how sequences line up
by different key events.

It is possible for a pattern to contain multiple occurrences of the
same event, and a sequence in the support set can have many occur-
rences of that event as well. When searching for a key event Ek in a
sequence, we first look for the indices of the key events preceding Ek,
and return the position of the first occurrence of Ek after those indices.



(a) A pattern with two events (“onl:Consumer Admin Landing Page”
and “UK:MyAcc:PayMyBillReview”) and the clickstreams in its sup-
port set.

(b) Selecting the first pattern segment shows the se-
quence segments from the beginning of the click-
streams to the “onl:Consumer Admin Landing Page”.

(c) Selecting the second pattern segment
shows the sequence segments from the
“onl:Consumer Admin Landing Page” to the
“UK:MyAcc:PayMyBillReview” page.

Fig. 11: Analysts select pattern segments to focus on parts of the visitors’ journey.

9.4 Focus on Sequence Segments
The support set of a pattern can still contain hundreds or even thou-
sands of sequences. The analysts are unlikely to browse every se-
quence in this case. In order to make sequence analysis easier, we
allow users to break down sequences into segments by events. Fig-
ure 11 shows how analyzing sequence segments can reveal more in-
sights with less overwhelming visualizations. When users click on a
segment linking two adjacent events in a pattern, we truncate the se-
quences in the support set using the two events and aggregates the
truncated sequences. The truncated sequences are often more compact
and revealing. For example, Figure 11c shows that most people go
to the “PayMyBillsReview” page directly from the “Consumer Admin
Landing Page”. This insight is not obvious from Figure 11a.

9.5 Hierarchical Pattern Mining
When the number of sequences in a pattern’s support set is large, trun-
cating sequences into segments using the pattern’s events could help.
It also makes sense to perform hierarchical pattern mining on sequence
segments as well. The analysts can right click on any of the segments
in the Pattern View to invoke a context menu, and run the Vertical
Maximal Sequential Pattern (VMSP) mining algorithm on the corre-
sponding sequence segments (Figure 12a). The contextual view pro-
vides cues to indicate which part of sequence dataset is the current
focus of investigation (Figure 12b).

Hierarchical pattern mining can also take place based on a user-
defined funnel. As discussed in Section 3, one commonly used ana-
lytic tool is to define events in the funnel and observe how traffic falls
out the funnel. In our design, the analysts can define a funnel, and the
context view visualizes the number of visitors reaching each key event
step in the funnel (Figure 1). They can further select funnel segments
and extract maximal sequential patterns to drill down into parts of the
data (Figure 1).

The context view also serves as a navigation map for users to return
to an overview of sequential patterns or to continue pattern mining
for a different segment of the pattern. Clicking on a segment in the
context view will update the pattern view accordingly to display the
corresponding sequential patterns.

10 EVALUATION

10.1 Analysis Scenario
We have applied the methods discussed in Section 8 and Section 9
to real-world clickstream datasets from two companies with different
time windows. To illustrate how these methods are being used in actual
analysis, we present an exemplary scenario in this section. The dataset

(a) Mining patterns on a pat-
tern segment through a con-
text menu.

(b) The context view highlights the pattern segment being
examined at the moment. The pattern view shows maxi-
mal patterns for the selected pattern segment.

Fig. 12: Hierarchical pattern mining allows analysts to drill down into
pattern segments of interest.

comes from a telecommunications company that offers mobile phones
and service plans, and contains 1361 visit sessions. The sessions are
aggregated into 647 sequences based on page names, with 626 unique
events and 17961 events in total. The longest sequence has 256 events,
and the average number of events in the sequences is 27.8.

To identify key customer journeys (Task 1), we run the VMSP al-
gorithm on this dataset produces 19 patterns, and applying the pruning
method described in Section 8 with threshold t = 0.65 gives us 10 final
patterns. These patterns represent common customer journeys taken
by the visitors. Browsing in the pattern view, the analyst sees that, for
example, 39.4% of the visitors look at quick breakdown of their bills
after logging in, and 14.4% continue to dive into the detailed billing
information.

The analyst is interested in the recent promotion on new data plans,



Fig. 13: Changing event color encoding from event category to de-
vice type reveals insights on how visitors browse website pages using
different devices.

so she looks for patterns containing the “upgrade eligibility” page.
One pattern shows that 8.7% of the visitors check whether they are
eligible for upgrades after logging in. To examine it more closely, the
analyst clicks on the visitor icon to select the pattern, and the sequence
view displays the individual clickstreams (Task 2). She aligns the se-
quences by the “upgrade eligibility” page to understand visitor behav-
ior before and after this milestone. Certain visitors are experiencing
problems with login and some spent as many as more than 30 steps in
the login process (Task 4). Many visitors were browsing phone and
plans after the eligibility page.

To get a better idea of how visitors spent their time in between
the “login” page and the “upgrade eligibility” page, the analyst right
clicks on that pattern segment and performs pattern mining on the cor-
responding sequence segments. About 4% of the visitors stopped at
the “consumer admin page”, which contained links to the “upgrade
eligibility” page. Interestingly 1% of the visitors went through the
NBA channel page under the company’s cable department. The ana-
lyst notes that it may be worthwhile to compare customers who sub-
scribe to the NBA channel against those who do not (Task 2).

Finally, the analyst would like to understand the influence of device
type on visitor behavior. She goes back to the “login” - “upgrade eli-
gibility” pattern and switches the color encoding in the sequence view
from “page category” to “device type” (Task 3). The sequence view
now updates the event colors accordingly (Figure 13). She sees that
visitors using mobile phones tend to have shorter sequences, and all
the longer sequences where people were browsing phones and plans
are from desktop devices. This can be an indication that the mobile
sites for products and services need improved designs to provide bet-
ter browsing experiences.

10.2 User Feedback

We implemented the sequence mining and visualization methods in
an initial prototype and demonstrated the tool to the analysts using
a clickstream dataset from a software firm. The analysts made posi-
tive comments, noting the power of sequence mining combined with
interactive visualization for exploratory analysis. According to the an-
alysts, they considered the sequential patterns as visual indices into
the clickstreams. Before this tool, there was no way to get a high-
level view of the dataset, neither was drilling down into individual
sequences available. Our tool provides visual cues for them to exam-
ine high-level patterns and focus on sequences they care about. One

analyst said, “I think this is a great step towards pathing. We have
been trying to figure out pathing and how the user goes throughout the
site and how they drop off. This will help us.” Another made similar
remarks: “Awesome. A difficult task made much easier. Key customer
journeys within the funnel a major improvement of the current fun-
nel presentation. This would drastically help answer many questions
around UX and navigation decisions.”

The reactions on the sequence view were mixed. Some analysts
valued the ability to see individual sequences aligned by a key event:
“[the sequence view] was one of the features that was appealing since
you can see clear volume paths that take more steps or less steps to get
to a certain point”. Others felt the sequence view to be overwhelming,
although it does not invalidate the usefulness of the tool: “Despite
the somewhat overwhelming graph [the sequence view] presented, the
insight is significant.”

Some analysts requested the capability to define sequences. A se-
ries of events can be grouped, divided or concatenated in different
ways to form sequences. For example, the analysts may want to break
down a sequence from a visitor into sessions; or to stitch together
sequences by a user ID. It is interesting to understand how different
sequence definitions influence the analysis outcomes. Another fre-
quently requested features is to group and compare sequences by traf-
fic sources (e.g. search, referral, or social media).

10.3 Limitations and Future Work

Analysts’ feedback as well as our own experience suggest that the pro-
posed approach also has several limitations. First, the size of click-
stream dataset used in Section 10.1 is very modest. Depending on the
time frame and filters used in analysis, real-world datasets can con-
tain up to hundreds of thousands unique sequences. The amount of
time taken to compute the patterns depends on the number of patterns
in a dataset (Figure 6 shows the time to compute MSPs for the sam-
ple datasets we have examined). For large datasets, the computation
time goes into the range of minutes or even hours. Future work along
this thread includes exploring the possibility of parallelizing pattern
computation and progressive pattern computation [31] to reduce the
latency and improve user experience.

With increased data size, we also need to examine the impact of pat-
tern pruning methods on the quality of final patterns being presented.
In this paper, we described a simple approach based on mutual in-
formation between patterns. It remains an unexplored area to define
interestingness or usefulness measures for sequential patterns and to
automate the process of selecting interesting patterns for visualization.

Finally, the scalability of the visualization interface can be im-
proved. The context view becomes crowded if we repeatedly perform
hierarchical pattern mining on pattern. The sequence view also be-
comes harder to use with larger datasets. We plan to address these
issues along two directions: 1) replace the sequence view with higher-
level summaries of event occurrences such as bar charts showing the
number of events per category, and show individual sequences on de-
mand; 2) augment the pattern view with interactive techniques such
as semantic zooming and expansion, so that the analysts can view the
raw sequences in the context of high-level patterns.

11 CONCLUSION

In this paper, we review design rationales in choosing data mining
methods and visual representations for clickstream exploration across
multiple levels of granularity. Using sequential mining as the primary
data reduction approach, we present an analytic pipeline consisting of
three stages: pattern mining, pattern pruning, and coordinated explo-
ration. We propose visualization designs for the sequential patterns
and raw sequences, and design interaction techniques to help analysts
make sense of the patterns and sequences. The feedback from profes-
sional analysts is positive, and confirms that our design addresses the
important analytic tasks in their work.



REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Data Engi-
neering, 1995. Proceedings of the Eleventh International Conference on,
pages 3–14. IEEE, 1995.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining us-
ing a bitmap representation. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
429–435. ACM, 2002.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, January 2003.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[5] M. El-Hajj and O. R. Zaiane. Parallel leap: large-scale maximal pattern
mining in a distributed environment. In Parallel and Distributed Systems,
2006. ICPADS 2006. 12th International Conference on, volume 1, pages
8–pp. IEEE, 2006.

[6] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and
V. S. Tseng. Spmf: a java open-source pattern mining library. The Journal
of Machine Learning Research, 15(1):3389–3393, 2014.

[7] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. VMSP: Ef-
ficient vertical mining of maximal sequential patterns. In Advances in
Artificial Intelligence, pages 83–94. Springer, 2014.

[8] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng. Mining maximal sequential
patterns without candidate maintenance. In Advanced Data Mining and
Applications, pages 169–180. Springer, 2013.

[9] E.-Z. Guan, X.-Y. Chang, Z. Wang, and C.-G. Zhou. Mining maximal
sequential patterns. In Neural Networks and Brain, 2005. ICNN&B’05.
International Conference on, volume 1, pages 525–528. IEEE, 2005.

[10] P. Jaccard. The distribution of the flora in the alpine zone. New phytolo-
gist, 11(2):37–50, 1912.

[11] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
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